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1. INTRODUCTION 

1.1 The Overall Problem 

Responding to criticisni claiming that the regulation of the power industry 

has been largely ineffective, the federal and many state governments have 

passed several pieces of legislation in the last few years that significantly affect 

power producers and their operations. A direct result of the utiUty deregulation — 

or according to some, regulation restructurinir ~ is the decline of the traditional 

concept of the vertically integrated utility. Deregulation has also changed the 

utility industry operational framework. Ebdsting short term scheduling processes 

need to undergo modifications in order to include tiie features and complexities 

associated with the reality of the restructured regulatory environment. 

Since the primary reason fi)r the regulation of electric utilities was their 

being considered as "natural monopoUes", it is expected that increased 

competition will eliminate many of the inefficiencies associated with 

governmental protectionism. To boost competition, the National Energy Policy 

Act (NEPA) was signed into law in 1992. One of the objectives of NEPA was the 

development of electricity markets operating according to the economic principles 

of free trade and competition. Li such markets, electricity is being treated as a 

commodity and is being bought, sold, or traded subject to market signals rather 

than regulatory provisions. The first such markets have already been 

established. To survive in a competitive market, utilities have to actively e^lore 

their options of reducing costs and increasing efficiency. Further, NEPA provided 
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for mandatory wholesale power wheeling. Several states also have announced 

plans for mandatory retail wheeling in the near fixture. Therefore, transmission 

services are subject to increased competitive forces as welL Several brokerage-

type systems have been proposed to model the organization structure that will 

serve as the marketplace for electricity. However, final decisions are not complete 

made and the restructuring of the industry is fiur firom finished. 

Traditionally, utilities have been subject to tight environmental 

regulations. In response to increasing public concerns about the continuous 

environmental degradation. Congress has also enacted several pieces of 

legislation intended to limit emissions. The 1990 Clean Air Act Amendments 

(CAAA) is an important bill for it no longer adopts the traditional command-

and-control approach. Instead, although tightening the federal air pollution 

standards, it offers utilities considerably increased flexibility in choosing their 

compliance strategies. Market concepts were introduced by providing for 

emission allowances and the associated markets. 

Therefore, the electric power industry is in a major restructiuing phase. 

There is a shift firom a cost-based to a market- and price-based approach. In the 

past, prices were set appl3ring a guaranteed rate of return on an all-inclusive rate 

base. The rate base was calculated based on the anticipated cost of production 

but it did sometimes include unnecessary ei^enditures. However, this in no 

longer the case. In todas^s environment, prices depend on market conditions and 

obey the fiindamental principles of supply and demand. Eviating markets have 

been opened to firee competition and trading. New markets are being established. 

The currently available models and corresponding software do not suf&ce to 

accurately represent the new environment. New or enhanced approaches and 

techniques are needed to address the fiesh challenges and problems associated 

with the deregulated reahty. 
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1.2 Justification and Scope of this Work 

1.2.1 Fuel and Emission Scheduling 

In this new era of competitive electricity markets, the participants need to 

analyze various possible ways of reducing costs and increasing ef&dency. Since 

fiiel costs account for a large portion of total operating costs, power producers 

need to become even more active in their &el supply market participation. Fuel 

markets are becoming more competitive, thus offering power producers 

additional opportunities for less costly fiiel supply purchases. The competitive 

new environment needs to be incorporated into daily scheduling activities. One 

alternative could be means of more accurate fiiel supply models that include 

supply costs and storage constraints. Such costs and constraints need to be 

accoimted for in daily scheduling models and the corresponding software. 

Power companies have many options to achieve compliance with the new 

emissions limitations. Enhanced dispatching techniques are one such option. 

Just like their fuel supply counterparts, environmental constraints need to be 

incorporated in the generation scheduling algorithms for on-line short-term 

dispatching, as well as long-term planning. It is also vital for companies to 

investigate whether participation in the emission allowances market would 

provide additional compliance alternatives. 

Li most previous approaches, fiiel and environmental limitations were in 

general considered as separate sets of constraints. However, emission output is 

dependent on fuel type, characteristics, and consumption. A complete dispatch 

algorithm should model such dependence by including accurate representations 

for both emission and fiiel, as well as their interface. Utilities must track actual 

operations compared to forecasted operations and make appropriate changes 

resulting firom enforcement of both fiiel and emission limits. 
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1.2.2 Transmission Cost Allocation 

Several different methodologies for dealing with transmission pricing have 

been proposed in the relevant literature. To date, much discussion has occurred 

and no sin^ approach has been universally accepted. Since the transmission 

grid is simultaneously utilized by several entities, how to £Eurly allocate the 

capital, operating, and maintenance costs to the individual users is a timely 

concern of the power industry. Although this problem is not directly associated 

with the scheduling problem discussed in the previous section, its significance to 

the power companies is recognized, and it is thus included in this document. The 

work on the issue presented herein was initially developed during a summer 

internship and was further e^qsanded during the author's graduate course of 

study. 

1.3 Importance of this Work 

The work during this research project focuses primarily on creating a 

single fiiel scheduling and emission scheduling algorithm. This algorithm 

dispatches generation subject to a combined set of fiiel and environmental 

constraints. Similar projects were addressed only in very few papers, mostly in 

the context of resource allocation, using simplistic models. Generation costs for 

power producing companies are in the order of tens of billions of dollars. The 

models developed in this project thus, should be of importance to the power 

industry, since even a small fractional decrease in costs resulting from a more 

ef&cient generation allocation, might provide significant savings. 

The issue of combining multiple sets of constraints into a single 

automated dispatching algorithm should receive additional attention in light of 

the current power industry reregulation movement as well as of approaching the 
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year 2000 when the second phase of the emission limiting provisions of the 1990 

Clean Air Act Amendments takes effect. A recent Department of Elnergy report 

states: '̂ ith increasing competition and with phase II of the CAAA90 slated for 

implementation on Jannary 1, 2000, utilities are showing less interest in making 

capital investments in e^ensive pollution control equipment, are uncertain 

about cost recovery, and want to be more competitive [1]." Most utilities have 

postponed their pollution abating strategies until later in this decade. Although 

scrubbers have proved to be a very efficient means of sul^ removal, that 

efSdency comes at a very high cost, which utilities are reluctant to spend given 

the current uncertainly of the utihiy environment. It is expected that power 

producing companies will employ many alternative strategies, including modified 

dispatching approaches and active involvement in the emission allowance 

markets, to complement and fine tune their compliance strategies. 

On the other hand, moving rapidly into a more competitive environment, 

companies will need to explore all possible ways of reducing their costs. They will 

be aggressive in tiieir fuel marketing strategies and they will more fully explore 

fiiel spot market opportimities. Ih the event of multiple available fiiel supplies, 

utilities should no longer depend on arbitrary factors to select their fuel 

suppliers. 

Fuel supplies and resultant emission outputs are interdependent 

variables. More so, in the case of sidfiir dioxide (SO2), and less so in the case of 

nitrogen oxides (NOx). Any approach that improves the scheduling process 

accounting for a large set of fuel supply and emission constraints should benefit 

the power companies. To the best of the author's knowledge, the suggested 

approach is probably one of the veiy few that treats the combined fiiel and 

emission problem giving equal weight to each of the two constraining 

subproblems. Ih most scheduling solution approaches described in the relevant 
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literature, only one of the two subproblems is fully addressed, while the other is, 

at best, only partially addressed. 

1.4 Organization of this Dissertation 

This work addresses the issues discussed in the previous sections and 

proposes possible solution techniques. Chapter 2 gives some basic background 

information on the ongoing regulatory reform of the electric power industry. 

Chapter 3 focuses on the fiiel supply constrained dispatch problem - henceforth 

referred to more freely as the fiiel-constrained dispatch problem — and presents 

an enhanced scheduling algorithm that accoimts for multiple available fiiel 

contracts and their associated limits. Chapter 4 deals with the emission-

constrained dispatching and presents a multilevel solution algorithm that can 

include a variety of emission constraints. Chapter 5 inter&ces the two problems 

and presents a combined algorithm. A series of tests were run and extensive 

numerical results are presented. In Chapter 6, the transmission cost allocation 

problem is addressed. A cooperative game theoretic model was evaluated as a 

potential solution approach. Finally, in Chapter 7, this work is summarized and 

general conclusions are presented together with suggestions for future work that 

may expand the ideas and algorithms presented herein. 

> 
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2. REGULATORY REFORM IN THE POWER INDUSTRY 

This chapter provides an update on the ongoing restructuring of the electric 

power industry as well as background information on the ftiel and environmental 

regulation of electric power producers. Most of the information and the data 

presented in this chapter are from various U.S. Department of Enei^ 

publications. The first section discusses some of the inefficiencies associated 

with the regulatory environment of the past. The second section presents the 

nurent status of regulatory reform in the power industry. The third section 

provides information on the competition in fuel markets and the fourth section 

discusses the most frequently adopted fuel procurement practices. Section 2.5 

presents background information regarding the environmental regulation of 

power producers, section 2.6 discusses the particular pollution problems 

associated with fossil power plants, and section 2.7 outlines the 1990 Clean Air 

Act Amendments. Subsequently, section 2.8 discusses the interdependence 

between friel and emission regulation and the final section of the chapter 

addresses the environmental impact of open tranmission access. 

2.1 Regulation Inefficiencies 

The principles that originally dictated the regulation of the electric power 

industry have come under much discussion and criticism. Past e3q)erience clearly 

has shown that the combination of imperfect regulation and the monopolistic 

status of the electric utilities led to deviations from what was originally thought 
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to be ideal utility performance. One of the primary issues that has given rise to 

the questions and concerns about the efficienqr of regulation, resulted firom the 

work of H. Averch and L. L. Johnson who investigated possible inefficiencies 

associated with the rate-of-retiim type of regulation [2]. 

2.1.1 The Averch-Johnson Thesis 

Harvey Averch and Leland L. Johnson presented their paper, discussing 

the behavior of a regulated firm, in 1962 [3]. Although they considered a phone 

company as an example of a regulated firm, their results are applicable to every 

regulated industry. In their paper, Averch and Johnson considered a monopolistic 

firm, producing a single, homogeneous product. They concluded that a regulated, 

profit maximizing company does not exhibit the same performance as the cost 

minimizing company. For any given output level, the regulated firm tends to invest 

more capital and less labor than the cost minimizing firm. This overcapitalization 

effect is known as A-J thesis (or A-J effect). In a different phrasing, each 

regulated firm may use inefficient capital to labor ratios. Assumptions included 

in this model are: 1) the firm can decide on any price-output combination as long 

as the regulatory constraint, as defined by Averch and Johnson, is satisfied, ii) no 

regulatory lag is present, iii) the market cost of capital is constant, and iv) the 

allowable rate of retium exceeds the cost of capital. 

Although the overcapitalization proposition is the most important result, 

the authors arrived at another important conclusion. They claimed that the 

regulated firm seems to have an incentive to enter competitive markets even 

when revenues fall below incremental costs. The loss is compensated by price 

increases on its monopolistic services. This, the cross subsidization clause, 

although comparatively neglected in the subsequent literature, leads to another 

important issue; the notorious gold plating or rate base padding. 
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The Averch-Johnson effect implies social and economic ine£5cien(y. The 

original work and conclusions foimd many supporters and many opponents. 

Empirical data was presented that supported arguments from both sides of the 

debate. The initial model was expanded, modified and tiioroughly analyzed by 

many economists and policy makers. Many of the original assumptions were 

heavily criticized. Alternative derivations and propositions have been suggested. 

Nevertheless, Averch and Johnson's work is still well respected and accepted as a 

valid representation of the economic behavior of a regulated industry. 

2.1.2 Gold Plating 

Simply stated, gold plating is the phenomenon of a regulated firm 

constantly adding nonproductive capital to its rate base. Gold plating (or base 

padding) charges may be of the following types; i) simple gold plating (such as 

using unnecessarily expensive equipment, acquiring useless assets, etc.), ii) 

maintain excessive spare capacity, and iii) penetration in secondary, subsidiary 

markets at nonprofitable prices (cross subsidization) [4]. Gold plating is an even 

more blatant inefficiency when compared to simple use of inappropriate capital 

to labor ratios. It should be noted that under strong regulation, where regulators 

not only contxol revenues but eliminate possible nonproductive capital waste as 

well, gold plating cannot occur. 

2.2 Electric Power Industry Restructuring [5] 

In the recent past, many of the entities involved in the production, dehvery, 

and utilization of electric power have been somewhat dissatisfied wit^ the 

existing operational environment. Large industrial customers for years have 

voiced their desire to freely choose their electrical suppliers and negotiate their 
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own electricity contracts. Independent power producers C^PPs) have been opting 

for competition in hopes of increased profits. Regulatory bodies have been trying 

to alleviate concerns that the traditional forms of regulation did not provide 

maximum e£ELcien<7. And finally, utilities were concerned that legislation has 

severely limited their strategies while, at the same time, offering competitive 

advantages to their non-utility rivals including independent power producers. 

As a result, the electric power industry is currently undergoing a major 

restructuring that is transforming it into a competitive market. It is expected 

that, at least functionally, the industry will be fiirther segmented into the three 

basic components: generation, transmission, and distribution. Most of the 

ongoing changes are the industry's reaction to Orders 888 and 889 issued by the 

Federal Energy Regulatory Commission (FERC) on April 24,1996. 

Order 888 deals with the issues regarding open access of the transmission 

grid and the recovery of stranded costs. These costs are defined as previously 

incurred costs enciunbered by the utihties in their anticipated efforts under the 

previous regulatory structure to serve their customers for the foreseeable fixture. 

These costs can not be fiiUy recovered if customers are completely fi%e to choose 

their electricity suppliers, as is the case in a fiilly competitive market. A major 

concern is which entities should ultimately pay for such costs. A recent study has 

estimated stranded costs at $88 billion and otiier projections estimate them 

anywhere between $20 and $500 billion. FERC, in its Order 888, provides for the 

recovery of stranded costs since they are vital for utilities to successfiilly compete 

in a fiee market. Departing wholesale customers will be the primary source for 

the recovery of stranded costs although alternative strategies are still under 

consideration. 

Order 889 requires utilities to install and operate systems for information 

sharing regarding their available transmission capacities. In addition, more than 



www.manaraa.com

11 

88% of the U.S. regulatory agencies are ah^ady considering activities related to 

retail competition. Several states with high electric rates are planning on 

opening their retail electricity markets to firee competition in expectations of 

lower rates. 

In a competitive market, it is critical for utilities to lower their costs. 

Investor-owned utilities (COUs) are lowering their O&M costs by changing their 

fuel purchasing strategies and by reducing the number of their employees. Some 

lOUs have e:q)anded their business with ventures in additional markets, such as 

consulting and construction services, oil and gas exploration, generation outside 

their service areas, foreign utility operation, as well as telecommunications. 

Furthermore, lOUs are trying to become more competitive throu^ mergers. Ih 

1995, 13 utilities have merged or had a merger decision pending. Unfortunately, 

not all mergers resulted in reduced costs. At the same time, publidy-owned 

utilities are also trjring to improve their competitiveness by ledudng their 

operating costs. Some of them have announced merger plans while others have 

significantly reduced their staff and others are considering similar cost cutting 

procediires. Still others are considering selling their entire operation. 

New players will eventually participate, once a competitive market is 

established. Power marketers are independent companies that buy and sell 

electric power and transmission services to and from electric utilities. Although 

the volume of their transactions is currently small, power marketers are e:q)ected 

to play a significant role in the future. Load aggregation is expected to become a 

significant new business. Spot markets are being formed and electricity fiitiures 

contracts have already been traded. The independent system operator is 

emerging as a key player in the operation of the power transmission system of 

the future. It is an entity vested with the authority to manage the transmission 

system and it is considered by many as a critical component in creating a 
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sustainable competitive electricity market free from the inefficiencies associated 

with previous regulatory practices. 

The restructuring stage is ongoing and details of the final outcome are still 

tmknown. However, it is certain that the utility industry of the fixture will be 

significantly different firom that of yesterday and today. 

2.3 Regulation and Competition in Fuel Markets 

Because of their interdependence at the national and international levels, 

energy markets overall, are subject to sharp, sudden movements resulting from 

externalities, such as political instabilities, regional conflicts, etc. Historically, 

many bills have been enacted to regulate energy markets, and fiiel markets more 

specifically [6]. However, government protectionism has been accused of being 

inefGdent, creating unnecessary costs, and not allowing fuel and energy markets 

to reach the optimal equiUbrium levels that would have been attained had the 

markets been unrestricted. 

Fuel prices started being regulated as early as the 1950's but it was in the 

1970's when government intervention reached its peak. As a response to the 

colluding tactics of OPEC, the U.S. government subsidized energy imports. Later, 

when oil price controls weakened, oil imports declined. Table 2.1 shows U.S. 

energy net imports by source for the last two decades [7]. Clearly, the oil price 

control program of the 1970's resulted in increasing oil imports. Ih contrast, 

regulatory schemes in previous decades resulted in decreasing oil imports. 

Another criticism against the traditional forms of regulation concerns the 

lag between requests for rate changes and actual commission decisions. Li an 

attempt to reduce such lags, regulators applied automatic fuel adjustment 

clauses (FAC). According to a 1974 study, most electricity rate increases were a 
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Time 

1976 

1977 

1978 

1979 

1980 

1981 

1982 

1983 

1984 

1985 

1986 

1987 

1988 

1989 

1990 

1991 

1992 

1993 

1994 

1995 

crude o: 

U.S, Net Imports by Source (Quadrillion Btu) 

Coal 
Natural 

Gas 

Crude 

CHli Petroleum^ Electricity 
Coal 

Coke Total 

-1.567 0.922 11.221 3.982 0.089 0.000 14.648 

-1.401 0.981 13.921 4.321 0.182 0.015 18.019 

-1.004 0.941 13.125 3.932 0.204 0.125 17.323 

-1.702 1.243 13.328 3.603 0.211 0.063 16.746 

-2.391 0.957 10.586 2.912 0.217 -0.035 12.247 

-2.918 0.857 8.854 2.522 0.347 -0.016 9.646 

-2.768 0.898 6.917 2.128 0.306 -0.022 7.460 

-2.013 0.885 6.731 2.351 0.372 -0.016 8.310 

-2.119 0.792 6.918 2.970 0.414 -0.011 8.963 

-2.389 0.896 6.381 2.570 0.428 -0.013 7.872 

-2.193 0.686 8.676 2.855 0.375 -0.017 10.382 

-2.049 0.937 9.748 2.784 0.483 0.009 11.911 

-2.446 1.221 10.698 3.308 0.328 0.040 13.149 

-2.566 1.278 12.296 3.029 0.113 0.030 14.181 

-2.705 1.464 12.536 2.757 0.020 0.005 14.077 

-2.769 1.666 12.308 1.912 0.231 0.009 13.357 

-2.587 1.941 13.065 1.895 0.292 0.027 14.633 

-1.780 2.255 14.542 1.854 0.292 0.017 17.180 

-1.689 2.518 15.131 2.128 0.459 0.024 18.570 

-2.140 2.745 15.432 1.437 0.381 0.026 17.880 

lease condensate, and crude oil imports for Strategic Petroleum Reserve 
I products, unfinished oils, and gasoline blending components 
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result firom FAC being applied rather than actual regulatory decisions [6]. This 

type of clause promoted ine£Gcien(^ and rate base gold plating. 

Besides directly controlling relative fiiel prices, the federal government, in 

several instances, has directly controlled tiie fuel choices of power companies. Li 

1978, the Public Utility Regulatory Policgr Act (PURPA) and the Power Plant and 

Fuel Use Act (PIFUA) required substitution of coal Ibr petroleum in electricity 

generation, reversing the poli^r guidelines of previous years [8]. However, despite 

the potential theoretical advantages of fttel shifting, actual fiiel conversion 

proved to be much more difiScult. La many instances, technological considerations 

became prohibitive and many plants did not successAilly complete their fiiel 

shifting programs. 

Competition has always existed to some extent in fiiel markets. The most 

fierce intrafiiel rivalry has been between coal and oil, especially on the East 

Coast. The basic factors in choosing one over the other were proximity to mining 

sites and environmental regulations. Generally speaking, coal has always been 

the major fuel source for electric utilities. Table 2.2 shows net generation of 

electricity as a function of fuel type for the last two decades [7]. Despite its 

popularity, coal is probably the least flexible of all fossil fuels. If s more difficult 

to extract, process, and transport than natiural gas and oil. Moreover, coal boilers 

are generally larger so that they can handle the more difficult combustion process 

of coal. Sul&r content is an additional major concern. In order for coal to be 

offered at competitive prices, economies of scale must be exercised. To of&et 

higher usage costs, mining, transportation, and processing costs must be kept to 

a minimum. At times, nuclear power seemed to be a significant competitor to 

coal. However, no new nuclear plants have been ordered since 1978, reflecting the 

public's and finandal organizations' increasing concerns about financial stability, 

safety, and waste disposal. Natural gas is another fossil fuel competitor with the 
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Table 2.2 Electric Utility Net Generation of Electricity (Billion KWh) 

Time Coal 
Natural 

Gas^ Petroleum^ Nuclear Hydro Other^ Total 

1976 944.4 294.6 320.0 191.1 283.7 3.9 2037.7 

1977 985.2 305.5 358.2 250.9 220.5 4.0 2124.3 

1978 975.7 305.4 365.1 276.4 280.4 3.3 2206.3 

1979 1075.0 329.5 303.6 255.2 279.8 4.4 2247.3 

1980 1161.6 346.2 246.0 251.1 276.0 5.5 2286.4 

1981 1203.2 345.8 206.4 272.7 260.7 6.0 2294.8 

1982 1192.0 305.3 146.8 282.8 309.2 5.2 2241.2 

1983 1259.4 274.1 144.5 293.7 332.1 6.5 2310.3 

1984 1341.7 297.4 119.8 327.6 321.2 8.6 2416.3 

1985 1402.1 291.9 100.2 383.7 281.1 10.7 2469.8 

1986 1385.8 248.6 136.6 414.0 290.8 11.5 2487.3 

1987 1463.8 272.6 118.5 455.3 249.7 12.3 2572.1 

1988 1540.7 252.8 148.9 527.0 222.3 12.0 2704.2 

1989 1553.7 266.6 158.3 529.4 265.1 11.3 2784.3 

1990 1559.6 264.1 117.0 576.9 279.9 10.7 2808.2 

1991 1551.2 264.2 111.5 612.6 275.6 10.1 2825.0 

1992 1575.9 263.9 88.9 618.8 239.6 10.2 2797.2 

1893 1639.2 258.9 99.6 610.3 265.1 9.6 2882.6 

1994 1635.5 291.1 91.0 640.4 243.7 8.9 2910.7 

1995 1652.9 307.3 60.9 673.4 293.7 6.4 2994.6 

' supplemental gaseous fuel induded 
 ̂includes fuel oils 1, 2, 4, 5, and 6, crude oil, kerosene, and petroleum coke 
 ̂ includes biomass fuels, wind, geothermal, photovoltaic, and solar thermal 
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advantage of minimuTn emissions. However, the Energy Supply Act of 1975 and 

the Fuel Use Act of 1979 significantly reduced the amount of natural gas 

available since they encouraged utilities to substitute coal for gas [6]. 

Overall, fuel markets, despite heavy governmental intervention that at 

times significantly distorted relative fiiel prices, have always been exposed to 

competitive forces. According to tiie Department of Energy's forecasts, the use of 

coal as a fuel for electric utilities will steadily increase and use of nuclear power 

will continue to decline. Table 2.3 presents quantities used and average costs of 

fossil fuel receipts at steam electric plants [7]. 

2.4 Fuel Procurement Practices 

Whatever the fuel of choice, electricity producers historically have relied 

heavily on long-term contracts to secure their fuel supplies. The first fiiel 

contracts were signed near the beginning of the century, whereas oil contracts 

became popular much later. Gas contracts became very popular during times of 

perceived energy crises. 

Procurement methods may be divided in four broad categories [9]: 

i) long-term contracts (ten or more years) 

ii) short-term contracts (one to ten years) 

iii) very short-term purchases - spot market (less than a year) 

iv) captive fuel production, particularly coaL 

Tj^ical contracts usually contain provisions regarding 

i) quantities of fiiel purchased and quality specifications 

ii) pricing ndes 

iii) guarantees 

iv) necessary conditions reqiiired to modify contract provisions. 
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Table 2.3 Quantity and Cost of Fossil Fuel Receipts at Steam Electric Utility 
Plants 

Coal Petroleum^ Natural Gas^ 

Time 
Quanti^ Cost Quantity Cost Quantity Cost 

Time 
(Ktons) C<^/MBtu) (Kbarrels) f<i/MBtu) (<^/MBtu) 

1976 454,858 84.8 549,973 199.0 2,962,811 103.4 

1977 490,415 94.7 635,556 224.9 3,106,403 129.1 

1978 476,169 111.6 616,040 219.1 3,140,654 142.2 

1979 556,558 122.4 515,695 307.2 3,368,976 174.9 

1980 593,995 135.1 419,140 435.1 3,588,814 219.9 

1981 579,374 153.2 345,544 542.5 3,573,558 280.5 

1982 601,427 164.7 239,111 492.2 3,161,348 337.6 

1983 592,728 165.6 219,652 462.8 2,732,248 347.4 

1984 684,111 166.4 202,372 486.3 2,878,808 360.3 

1985 666,743 164.8 164,947 431.7 2,808,921 344.4 

1986 686,964 157.9 228,522 243.9 2,387,622 235.1 

1987 721,298 150.6 194,578 301.1 2,605,191 224.0 

1988 727,775 146-6 236,924 243.9 2,362,721 226.3 

1989 753,217 144.5 246,422 289.3 2,472,506 235.5 

1990 786,627 145.5 209,350 338.4 2,490,979 232.1 

1991 769,923 144.7 169,625 254.8 2,630,818 215.3 

1992 775,963 141.2 144,390 255.1 2,637,678 232.8 

1993 769,152 138.5 147,902 243.3 2,574,523 256.0 

1994 831,929 135.5 142,940 248.8 2,863,904 223.0 

1995 826,860 131.8 84,292 267.9 3,023,327 198.4 

' weighted averages; include fuel oils 1, 2 (light), 4, 5, 6 ^eavy), kerosene, jet fuel; does not 
include petroleiun coke 

2 includes supplemental gaseous fuels 
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Basic pricing rules used include 

i) cost recovery 

ii) escalating price schedules 

iii) market price. 

Ifistorically, several unusual asymmetrical situations have existed. In the 

late 1960's, residual fiiel oil contracts provided only for market price declines. 

However, natural gas contracts of the ISTCs allowed only price increases, 

possibly because of reduced supplies and reserves. Anodier type of clause, often 

included in coal and gas contracts, are the take-or-pay provisions that guarantee 

continued pajrments regardless of whether fuel has been actually used or not. 

What such provisions are trying to accomplish, is to balance the risk between 

sellers and buyers. Past experience has clearly demonstrated thou^ that no 

matter how strong the provisions, adjustment to reality always prevails. 

Expensive contracts have been renegotiated. Cheap contracts have been broken. 

Recent trends include withdrawal firom long-term contracts and increased 

participation in spot markets. Investor owned utilities, by modifying their fuel 

purchasing strategies, have reduced their operating costs firom 4.5 fi/KWh in 

1986, to 3.5 fi/EWh in 1995 (both prices in 1995 dollars) [5]. Li the past, the use 

of very long-term coal contracts was the norm for coal-fired plants located both 

remotely and adjacent to mines. Spot buying has been extensive mainly in cases 

where utilities have access to numerous nearby coal supplies. Spot bu3dng has 

enjoyed increased popularity as fiiel markets have become more competitive. 

Nevertheless, although the number of available fiiel suppliers does play a 

significant role, U.S. utilities continued feivoring long-term contracts for the bulk 

of their base fuel supplies. Of interest is that past experience has shown that 

most coal contracts provide strong protection to sellers. 
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Natuial gas contracts depend heavily on public preassumptions regarding 

oil prices and availability. Gas contracts peaked in the 1970"s under the 

assumption of continued rising oil prices. When those fears later proved to be 

unsubstantiated, most of the gas contracts were rearranged and subsequently 

their numbers declined. 

Contracting for residual fuel oil has also been popular in the past. In 

recent years there has been a shift from a few integrated oil companies 

dominating the international oil production and marketing to a more competitive 

and open oil marketplace. The failure of OPEC to sustain artificially high prices 

and the subsequent expansion of worldwide oil trading, resulted in increasing the 

advantages of short- and mediimi-term contracts over long-term ones. Finally, in 

the nuclear fuel markets, uranium procurement practices shifted firom 

domestically mined products to increased imported supplies subject to DOE'S 

supervision. 

Spot markets for fuels varied following demand changes. Sometimes 

natural gas might not be available as a boiler ^el, especially during prolonged 

periods of extreme cold conditions. 

A final procurement option exercised in the past - at least in the case of 

coal - was vertical integration (captive supply and demand) [10]. The trend 

historically was started by few eastern companies and, for many years, involved 

mines in the proximity of power plants. The trend became widespread in western 

utilities and, in the 1970's, included coal mines located away from power 

facilities. This kind of integration has been practically abandoned in the East, as 

the coal business proved to be too cumbersome and not sufGLciently profitable for 

most utilities. Companies, such as Duke Power, completely withdrew, whereas 

others, such as American Electric Power, sold the majority of their wnning shares. 

In the West, integration still endures. A more recent trend is where several 
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electric utilities get involved with gas distribution. Among the largest utilities 

offering electric as well as gas services are Pacific Gas & Electric in California, 

Consumers Power in Michigan, and Public Service & Gas in New Jersey. 

2.5 Environmental Regulation of the Power Industry 

During the course of the last few decades, electricity production has been 

targeted as a major source of pollution. Therefore, the power industry has been 

subject to the provisions of the many environmental laws enacted in recent years. 

The Clean Air Act of 1963 and its amendments of 1970, 1977, and 1990 provide 

the basic legislative framework for air pollution control and abatement. Similar 

laws have been passed to control water and land pollution. At the state level, 

power companies have been subject to strict plant siting regulations. Moreover, 

nuclear facilities need to comply with waste treatment and disposal rules. Table 

2.4 provides a partial list of legislation enacted in the last 25 years aiming to 

protect the environment from fiirther degradation [1]. 

Hiere are three distinct ways of regulating and controlling emissions [11]: 

1) Emission standards, a form of the so called ''command and control" approach, 

may include upper limits on emissions from a particular source, or a Tnam'muTn 

allowable emission rate. Such an approach is not considered efficient from an 

economic point of view, since it does not promote cost minimization. 

2) Emission fees are penalties imposed on pollution emitted from a source. This 

is a more efficient approach, since it allows companies to incorporate emission 

costs in their scheduling activities and dispatch units on an equal combined 

incremental cost. Theoretically speaking, the emission charge should be equal to 

the marginal damage caused by emissions. Practically, such charges are based on 

aggregate damage or control costs. Some state public utility commissions (PUC) 
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Table 2.4 Major Federal Environmexital Protection Legislation 

Year Legislation 

1963 ClecaiAirAct 

1967 Air Quality Act 

1970 Water and Environmental Quality Act 

CleanAir Act Amendments 

1972 Clean Water Act 

Noise Control Act 

1973 Endangered Species Act 

1976 Toxic Substances Control Act 

National Forest Management Act 

1977 CZean Air Act Amendments 

1979 Pipeline Safety Act 

1980 Fish and Wildlife Conservation Act 

1981 National Nuclear Waste Policy Act 

1990 CleanAir Act Amendments 

use emission charges (or adders) to monetize the societal costs of emissions in 

their decisions for future power plant construction. 

3) Marketable permits allow regulatory committees to control emission levels 

and optimize control costs. Each emission credit allows for the emission of one 

ton of a pollutant. So &r, emission permits, called allowances, have been 

introduced only for SO2 emissions. 

Traditionally, environmental regulations were based on command-and-

control methods that practically dictated that certain techniques be used or a 
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partictilar type of fuel be purchased to reduce emissions. However, the Clean Air 

Act Amendments (CAAA) of 1990 introduced a novel approach as discussed in 

section 2.7. 

2.6 Pollution Problems from Power Companies 

The Environmental Protection Agem^ (EPA) identified six criteria air 

pollutants, found throughout the United States: 

i) sulfur dioxide (SO2) 

ii) nitrogen oxides (NOx) 

iii) carbon dioxide (COa) 

iv) lead 

v) particulate matter less than 10 microns in diameter ^Mio) 

vi) volatile organic compounds (VOC). 

Power producing facilities emit all of the above pollutants, although lead 

emissions are in insignificant quantities. The share of the electric power plants' 

emissions is shown in Figure 2.1. Nitrous oxide and methane are included in the 

figure since they belong in the group of the "greenhouse gases". 

Table 2.5 tabulates emission data finsm fossil fueled U.S. power plants for 

the last few years [12]. Emissions firom coal-fired power plants accoimt for a large 

portion of the total emissions finm aU fossil-fiieled units. This is true because i) 

more coal-fired capacity is in use than any other type of fossil fiieled capacity, 

and ii) sulfur is present in virtually any type of coal, in different concentrations. 

Table 2.6 shows emission estimates for all types of generation, which are 

however, specific to particular technologies and locations. During combustion, 

some of the sulfiir combines with the o:Qrgen in the air to form SO2. Production of 

SO2 depends mainly on the type of fuel used. This is not the case with NOx whose 
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Figure 2.1 Electric Utilities' Share of Total U.S. Emissions in 1993 

formation depends mostly on the combustion process rather than on the fuel 

burned. Nitrogen firom the fiiel combines with o^qrgen in the air to form fiiel-NOx. 

Nitrogen in the combustion air imites with o^gen in the air to form thermal-

NOx. The simi of the two is the total NOx emissions produced during the 

combustion process. The most important nilxogen oxide is the nitrogen dioxide 

(NO2), which is the compoimd that gives photochemical smog its characteristic 

yellowish color. Carbon dioxide is also formed during die combustion process 

when carbon particles from the fossil fuel unite with o^gen in the air. 

Power plant emissions are linked to three major environmental problems: 

1) Acid rain includes rain, mist, snow, fog, or hail that is more acidic than normal, 

as described by its pH. Unpolluted rain has a pH of 5.6, i.e., it is slightly acidic. 



www.manaraa.com

24 

Table 2.5 Estimated Emissions firom Fossil-Fueled Steam Electric Generating 
Units at U.S. Utilities (thousand short tons) 

Time NOx SO2 CO2I 

1990 7,526 15,633 1,914,093 

1991 7,443 15,513 1,907,812 

1992 7,188 15,175 1,902,884 

1993 7,378 15,014 1,970,193 

1994 7,168 14,377 1,972,001 

1995 7,135 11,571 1,967,669 

' As of 1993 data, COz emissioii firom light oil and NOx emission reduction £rom control 
technologies have been revised; historical data have been revised to reflect changes 

Table 2.6 Estimated Emissions firom Electric Power Generation (tons/GWh) 

Fuel Type SO2 NOx PMio CO2 VOC 

eastern coal 1.74 2.90 0.10 1,000 0.06 

western coal 0.81 2.20 0.06 1,039 0.09 

gas 0.003 0.57 0.02 640 0.05 

biomass 0.06 1.25 0.11 01 0.61 

oil 0.51 0.63 0.02 840 0.03 

wind 0.00 0.00 0.00 0 0.00 

geothermal 0.00 0.00 0.00 0 0.00 

hydro 0.00 0.00 0.00 0 0.00 

solar 0.00 0.00 0.00 0 0.00 

nuclear 0.00 0.00 0.00 0 0.00 

' Net emission 
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Precipitation with pH less than 5.5 is considered acid rain. SO2 and NOx in the 

air react with water vapors in the atmosphere to form adds that are dissolved in 

the clouds to form acid rain. The highest acidic conditions are fotmd in the 

eastern United States. Acid rain is blamed for the acidification of surface waters 

and for the observed damage to spruce trees. It is believed that large acid 

deposits can threaten the sustainabilily of many ecosystems. 

2) Urban ozone NOx emissions react in tiie atmosphere, in the presence of 

sunlight, to form ozone. Since automobiles are another major source of NOx 

emissions, high concentrations of ozone are observed in urban areas. Such high 

concentrations can cause several health problems, ranging from eye irritations to 

respiratory problems. 

3) Global climate change The group of substances, collectively called "greenhouse 

gases", is crucial for the existence of life on the planet since they regulate the 

global temperature and maintain it at tihe appropriate levels to sustain life 

forms. However, it is believed that anthropogenic additions to greenhouse gases 

are increasing the greenhouse effect, thus causing a gradual rise in global 

temperatures. The major greenhouse gases are carbon dioxide, methane (CH4), 

nitrous oxide (N2O), and chlorofluorocarbons (CFC). The Federal Government has 

laimched the Climate Change Action Plan, a set of 44 actions aiming to stabilize 

the greenhouse gas emissions at the 1990 levels by the year 2000. Currently, CO2 

emissions are monitored but not regulated and are reported on a voluntary basis. 

2.7 The 1990 Clean Air Act Amendments (CAAA) 

The 1990 CAAA were the most recent in a series of attempts by the 

Federal government to establish nationwide air quality standards and pollution 

abatement regulations. The Act contains eleven titles, five of which affect the 
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power industry. Title IV, acid rain control, mandated a system of SO2 and NOx 

reductions designed, to become effective gradually over a period, of time. This title 

introduced a two-phase program to reduce SO2 emissions by 10 million tons from 

the 1980 levels. At the completion of tiie program, an annual nationwide cap will 

become effective. During the program's first phase, effective January 1, 1995, 261 

generating imits, explicitly identified, in the law, must reduce their emissions to 

an annual average rate of 2.5 lb of S02 per MBtu of input energy. All 261 units, 

usually referred to as "Table 1 or phase I units", are located on the eastern half of 

the United States. Power companies have designated an additional 174 

compensating units, based on the EPA rules that allow utilities to declare 

substitution units as part of their phase I compliance plans. Hence, a total of 435 

units are currently participating in the first phase of the SO2 emission control 

plan. Phase II, which begins January 1, 2000, establishes more stringent SO2 

emission limits. At that time, all 25 MW or greater generating imits will be 

allowed to emit a maximum of 1.2 Ib/MBtu. It is expected that 2000 imits will be 

covered by phase II. Nationwide total SO2 emissions will be capped at 8.9 million 

tons annually, which is a significant reduction compared to the 14.8 million tons 

of SO2 emitted, in 1993. Power facilities will be required to possess sufficient 

emission allowances to cover their emissions. The innovative concept of 

marketable emission allowance, discussed, in a later section, gives the bearer the 

right to emit one ton of SO2. 

Title IV also regulates NOx emissions. The same 261 units, identified in 

the bill, must reduce their NOx emissions by 2 million tons during phase L Coal-

fired electric power plants are required to meet maximum permissible emission 

rates that vary with the type of boiler. For instance, wall-fired units are limited 

to 0.5 Ib/MBtu and tangentially-fired units are limited to 0.45 Ib/MBtu. The EPA 

is directed to conduct fiirther studies to determine whether additional measures 
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and limits are necessary. NOx emissions are additionally addressed in Title I of 

CAAA since NOx is considered a precursor to ozone formation. NOx, under Title I 

provisions, may be treated as a non-attainment pollutant, and in non-

attainment areas stricter NOx standards may be established. It is ejected that 

efficient NOx control strategies will be more effective in controlling urban ozone 

than regulating VOC. Li general, current NOx regulations are not considered 

stringent enough to alleviate the problem of ozone formation in areas of high 

urban concentration, such as the Los Angeles basin. 

Title ni regulates air toxics, ie., 189 substances that present a possible 

threat to public health. Although power producers are not currently regulated 

imder this title, 37 air toxics are detected in power plant stack gas. Titles V and 

VI provide for compliance means and expand the authority of EPA to issue 

penalties and citations. Plant supervisors are personally subject to 

imprisonment in case a plant violates the new standards. 

Overall, the CAAA introduced a new approach to emission control. Recent 

studies by the £!PA and DOE indicate that the emission targets have been 

reached thus far. Although the amendments are ejected to be successful in 

establishing national compliance standards, tliey will result in a 

disproportionate distribution of emissions. As is suggested in [11] possible 

refinements might allow for varying standards in accordance with the different 

levels of damage from SO2. 

2.7.1 Power Industry Compliance with the 1990 CAAA 

At the end of 1995, the first year of phase I of the emission reduction plan, 

all affected units were found to have complied with the CAAA requirements. 

Some analysts suggested that with low siilfiu: coal prices steadily declining, most 

utilities would have switched to low sulfur coal and emissions would have been 
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reduced. However, no matter what the driving motivation, phase I units emitted 

5.3 million tons of SOa in 1995, well below the EPA goal of 8.7 million tons and 

50% lower than their estimated 1985 emissions of 10.5 million tons. Table 2.7 

shows the share of phase I imits to total emissions during the last decade. 

Table 2.7 Comparison of SO2 Emissions from Phase I and Non-Phase I Units 
(million tons) 

Capacity (GW) Total SO2 Emissions 

1995 1985 1990 1994 1995 

Phase I Units 130.9 10.5 9.7 8.0 5.3 

Non Phase I Units 333.2 5.1 5.9 6.3 6.6 

Total 464.1 15.6 15.6 14.4 11.9 

The CAAA differed from previous regulatory efforts to control emissions in 

that it offered utilities much flexibility in choosing their compliance strategies as 

well as access to marketable emission permits. A recent study by the DOE [1] 

indicated that friel switching and/or blending was the most £sLvorable compliance 

strategy. 136 phase I imits chose this action resulting in 59% of the total SOa 

reduction achieved in 1995. Scrubbers installed by 27 units accounted for 28% of 

the total SO2, whereas 83 xmits obtained additional allowances and 7 units were 

retired. The remaining 8 phase I units chose different plans, unspecified in the 

DOE report. Figures 2.2 and 2.3 present a visual summary of these results^. 

 ̂ Figxires 2.1 and 2.2 do not include substitution and compensating units; presented data 
cover only the original 261 phase I units 
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other Retired 
3% 3% 

Scrubbers 
10% 

Allowances 
32% 

Fuel Switch. 
52% 

Figure 2,2 Compliance Methods used by Table I Units in 1995 

Figure 2.3 Achieved SO2 Reduction by CompKance Method in 1995 



www.manaraa.com

30 

Before implementatioii of the emission control program, installing 

scrubbers was ejected to be the method of choice for the majority of power 

plants. The fact that this prediction did not actually materialize is attributed 

mainly to scrubber costs and declining coal prices as well as to tiie failure of 

state legislators in Illinois and Lidiana to enact laws protecting their local high 

sulfiu: coal productions. Recent technological advances in scrubber technology 

have made them efi&cient up to 99%, removing more SO2 than required and, thus, 

creating a surplus of allowances for the utilities installing them. 

Power industry compliance with the new environmental regulations did 

not come without cost. Li a preliminary report, analysts at MET estimated an 

annualized cost of $836 million [1]. The establishment of an emission allowance 

trading program is credited for SO2 compliance costs lower than initially 

predicted. Data indicates that scrubbers were the most expensive option with an 

annualized average cost of $322 per ton of SO2 removed. The cheapest option was 

switching bituminous plants to bum low-sulfiir subbituminous coal at an 

annualized average cost of $113 per ton of SO2 removed. 

The situation is somewhat more complicated for NOx. The EPA finalized 

NOx regulations as late as April 13, 1995, following court challenges firom utility 

groups on previous rulings. The deadline for compliance was extended to January 

1, 1996, and it is estimated that annual NOx emission from phase I tangentially-

and wall-fired boilers would be reduced by 400,000 tons, beginning in 1996. 

Phase n will cover virtually all fossil-fired generating units. The SO2 

emission limits are stricter and the availability of emission allowances will be 

limited. Several companies have annotmced their plans to defer scrubber 

installation until phase IL Li addition to phase I options already exercised, 

repowering unused or underutilized units seems a likely additional option. NOx 

regulations will be stricter. Maximum allowable emission rates will be further 
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reduced from phase I levels. Moreover, power producers are encouraged to 

consider and examine options that are capable of simultaneously reducing 

additional pollutants that are not currently imder regulation, e.g., particulates, 

merciuy, etc. 

2.7.2 Emission Allowances 

The introduction of tiie novel concept of tradable emission allowances 

completely changed the underlying philosophy of the emission controlling 

programs since it provides a market-based mechanism to achieve compliance. 

The EPA supplies emission allowances annually at auctions taking place each 

March. Additional allowances are available firom scrubbed plants as well as from 

plants switching to lower sulfiir fuels. Allowances may be traded in direct 

interutility transactions without participating in the annual auctions. They can 

be used immediately or banked for future use. Prices in recent auctions have been 

much lower that what was estimated at the time of passage of the CAAA. Li the 

1993 EPA conducted auction, minimum winning bids started at $131 whereas 

minimum successfiil bids started at $150 in the 1994 auction [13]. Prices for 

later auctions were not readily available. These prices were valid for the spot 

auction, ie., allowances are immediately usable. In auctioning a separate set of 

allowances, usable after seven or more years (advance auction), prices were 

somewhat lower. The relatively low prices attracted several companies and 

allowances were used by many plants to comply with phase I requirements and 

defer the high costs of scrubber installation until phase IL They were also 

considered an attractive means to hedge against the uncertainly surrounding 

phase n, especially in a hi^y competitive environment. Allowance markets have 

already been established and sophisticated finanrial instruments, such as 

contracts, futures, and contracts, are available. The way allowance auctions are 
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performed has received much criticism focusing mainly on the lack of a Ttiim'TnuTw 

winning price as well as on the existence of multiple winning prices in the current 

auctioning mechanism [1]. In. response, the EIPA issued an advanced notice of 

proposed rulemaking asking for suggestions for changes in the current auction 

design. However, since emission allowance markets already have existed for a 

number of years and market prices are established, the current format was 

deemed to not any more misinform the markets. Aldiough changes in the early 

years, 1993 and 1994, might have been helpful, the EPA recently announced that 

it has no plans to change the auction format. 

Emission allowances are expected to play an equally important role during 

phase H, although prices are eiqiected to rise. Some concerns have surfaced about 

the way allowances are taxed, arguing that the current system favors internal 

utility use and, t^us, impedes the formation of fi%e, competitive markets. 

However, these problems are supposed to be addressed by the Congress. 

So far the experience firom the emission allowance program has been very 

positive. Not only has it helped to produce SO2 emission reduction &ister and in a 

less costly manner, but it also has provided incentives for economic 

improvization. Some high-sulfur coal-buming companies actively participated in 

allowance trading and acquired allowances that were bundled with their coal 

produce, thus increasing their competitiveness. Although emission allowances 

are currently issued only for SO2, their success has supported discussions to 

expand the program to cover additional pollutants. 

2.8 Emission Regulation and Fuel Consumption 

According to the DOE projections, coal maintains its cost advantage over 

alternative fossil fuels. When the CAAA. phase II emission requirements become 
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effective, gas-fired generation seems to be the most economical choice through the 

year 2010. Beyond that time point, coal is expected to resume its leadership 

among fossil fuels for newly constructed base-load capacity. 

As expected, the CAAA requirements affected die operation of the U.S. 

coal industry. Demand for low-sulfixr coal increased whereas production in hig^-

sulfiir coal mines dropped significantly. Improved miTiiTig technologies as well as 

reduced transportation costs, partly because of increased railroad competition, 

resulted in decreased fuel prices. The U.S. average delivered cost of low-sulfiir 

coal fell firom 46.25 $/short ton in 1985 to 27 $/short ton in 1995 (comparison in 

1995 dollars) [1]. The fuel delivered price includes the mine price plus 

transportation and loading expenses, and accounts for up to 75% of the operating 

costs of a power plant. 

In 1995, low-to-medium sulfiir coal accoimted for 77% of total coal receipts 

at power producing facilities, compared to 67% in 1990. The Powder river basin 

became the leading coal supply region leaving the central Appalachian region in 

the second spot. Orders firom Wyoming and Montana mines increased 

substantially. The transitional period however, did not make winners only. I£gh-

siilfixr coal production in the Illinois basin was significantly reduced resulting in 

drastic reduction in the number of mines operating in the region. The number of 

miners employed fell an average 10%^ear in the hig^-sulfur coal producing 

states of Illinois, Indiana, and Ohio. Although state legislators attempted to 

protect their local coal industries, the Alliance for Clean Coal, a coalition of 

western coal mines and railroad enterprises, was successfiil in having the 

proposed legislation blocked and finally struck down. 

hi most past approaches to simulate daily generation scheduling 

activities, fuel resources and emission compliance were regarded as two 

disassociated areas of operation. However, as it is clear firom the discussion in 
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the previous sections, there exists a strong interdependence between fuel and 

emissions in the power industry. Fuel regulatory policies were always taking into 

consideration possible environmental consequences, whereas emission 

regulations determined fuel consumption patterns. Such an interdependence 

should not be overlooked by power producers in planning and operating activities. 

One of the major goals of this work has been tiie development and 

implementation of an operational framework integrating ftiel and environmental 

considerations. 

2.9 Open Access and Environmental Concerns 

Environmentalists, together with advocates for energy conservation 

programs, were very concerned with the possible harm induced by the FERCs 

orders 888 and 889. Especially for NOx, open access mi^t permit old, dirtier 

plants to increase generation. Responding to these concerns, the FERC prepared 

an Environmental Impact Statement (EIS), which concluded that 

implementation of open access, as described in orders 888 and 889, would cause 

minimal changes to NOx emissions, in general below 2%. The study indicated 

that NOx emissions are more sensitive to relative fuel price changes than to open 

access, hi £9Lct, it was reported that with a constant ratio of natural gas to coal 

prices, total NOx emissions might end up reduced in an open access environment. 

The Energy Information Agency (EIA) of the DOE conducted also an independent 

study on the same subject, in response to a U.S. Senate request, which reached 

similar conclusions. Regarding emission standards, open access' impact is small 

compared to the impact of electricity demand growth. Again, such an impact was 

foimd to be less than 3%. The key restilt was that, with or without open access, 

SO2 and NOx emissions will increase as a result of growing electricity demand 
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and the retirement of nuclear facilities. Additional NOx measures, if 

implemented, may succeed in keeping NOx emissions below the 1994 levels, 

through the year 2015 [14]. 

On a state level, environmental groups opposed direct transmission access 

fearing that if the focus is shifted on reduced costs, external costs of fossil fiiel 

generation may be overlooked and projects for cleaner generation will not be able 

to compete [11]. Additional problems arise regarding jurisdictional 

considerations since electricity markets, in all probability, will cross state 

boundaries. Utility executives have indicated that not all of the new power 

producing entities that will enter the electricily markets are subject to similar 

emission regulations, thus creating an xmeven playing field. A complicated 

situation is foreseen when power producers under the jurisdiction of a state PUC 

compete with out-of-state producers that have to observe different, possibly less 

restrictive emission regulations. If potential damages to pubHc health are viewed 

as real economic costs, additional intervention at the federal level will be 

necessary to address environmental externalities resulting firom transactions 

transcending state lines. 
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3. FUEL-CONSTRAINED DISPATCH 

This chapter considers the dispatch problem, when additional constraints, 

stemming firom the supply side, are applied. The first section of the chapter 

provides a literature review, followed by the mathematical formulation of the 

traditional economic dispatch problem, which is presented in the second section. 

Section 3.3 presents the dispatch problem when fiiel resources are supplied using 

escalating price schedides and section 3.4 fiirther augments the problem to 

include cases of limited fuel supplies. Section 3.5 discusses the solution approach 

taken to solve the overall problem and the section 3.6 presents numerical results. 

The final section provides a chapter siunmary. Although fiiel storage is 

mentioned in this chapter, it was not included in the actual implementation. 

3.1 Literature Review 

Fuel-constrained dispatching may include constraints introduced by the 

fuel network limitations, existence or lack thereof of storage facilities, fiiel 

availability, fiiel contractual agreements, and various combinations of the above 

constraints. Fuel-constrained unit commitment and resource schediding are two 

topics addressed in the Hterature. Traditionally, the fuel constraints included in 

scheduling and operational planning algorithms were a rather simple 

representation of the fuel network. Moreover, in most of these approaches, it was 

assumed that the availability of sufficient fiiel supplies is guaranteed, at given 

fixed prices. This is an oversimplified representation of today's complex fuel 
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markets. Fuel supplies and their marketing must receive additional attention 

because of dieir importance in reducing utilities' total operating costs, thus 

increasing their chances to succeed in the competitive new environment. 

Lament et al. [15,16,17] presented some of the first papers dealing with 

the fossil fuel scheduling problem. Different approaches, such as the out-of-kilter 

and the reallocation algorithms, were used to solve the problem. The papers by 

Kumar, Vemuri and their group treated the entire fuel resource scheduling 

problem in a very methodical way. In the first of their papers [18], fuel resource 

scheduling was considered as an integrated part of an energy management 

system. Technical considerations and required pieces of data were presented. Bi 

subsequent papers, the long- as well as the short-term fiiel scheduling problems 

were addressed [19,20,21]. The same problem was also treated within a daily 

(24-hour) time firame [22]. The problem was formulated as a network flow 

optimization problem and minimum cost network flow algorithms were used to 

solve it. The same problem was revisited more recently by Vemuri et al. [23] and 

was solved by means of a decomposition strategy that decouples the overall 

problem into a fiiel dispatch and a generation dispatch. 

The same authors applied a similar decomposition approach in their 

treatment of fuel-constrained unit commitment [24]. This problem was 

decoupled into a fuel dispatch and a separate unit commitment problem. 

Alternative solutions for the same problem were presented in several other 

papers [25,26]. All of these approaches considered fuel constraints of different 

levels of complexity, hi most cases, variants of Tjigrawgian multipliers methods 

were the solution approach chosen. 

Van Meeteren [27] used dynamic and linear programming techniques to 

solve the optimal fiiel allocation problem. A hierarchical structure was developed 

that combined the fiiel allocation and unit commitment problems. lii their 
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treatment of foel allocation, Lee at al. [28] used an adaptive scheme utilizing the 

concept of pseudo fiiel prices as decision variables. 

Asgarpoor's review paper [29] compared linear, nonlinear, and network 

flow techniques applied to the fiiel scheduling problem. Other methods used to 

solve the same problem were Karmakar's interior point algorithm [30], genetic 

algorithms combined with simulated annealing and fuzzy sets [31], and more 

recently- fuzzy Unear programming [32]. At a practical level, Rosenberg et al. [33] 

in their paper, presented the actual practices for fuel scheduling and accounting 

employed in Houston Lighting & Power Company. Contractual agreements were 

taken into serious consideration since penalties for violations were "significant." 

The paper by Newdome et al. [34] focused on the modeling of blending and 

transloading facilities. Such facilities are used to Ttiiic different l^es of coal, 

primarily for the purpose of sulfiir content reduction. An interesting paper by 

Moslehi et al. [35] is one of the few in the literature that included fuel supply 

constraints in the optimal fiiel procurement formulation. The whole process, from 

the time the fuel is purchased until the time the fiiel is consumed, was included 

in the model. Linear programming techniques were used to solve the overall 

problem. To reduce the problem dimensions, fuel prices were prorated and fuel 

sources were aggregated. Gibson et al. [36] addressed the dependence of optimal 

fuel procurement on accurate fuel pricing. Different formulations of fuel prices 

were used and compared and the sensitivity of the total fuel cost with respect to 

the various fuel pricing methods was analyzed. Potential spot market purchases 

were also considered. The paper concluded that incremental fuel prices should be 

used to correctly dispatch generation, when multiple sources of fuel, with 

different prices and constraints, are available. Incremental fiiel pricing was used 

throughout this research work. 
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Overall, although the fuel dispatch problem has been addressed 

sufGdently in the literature, the focus was on the complications introduced by the 

fuel networks, as well as on the interface between fuel allocation and the more 

general problem of unit commitment. Fuel supply considerations received limited 

attention and prices weie assumed fixed at given levels. Models for limited 

energy supplies were not included in most dispatch algorithms of the past. 

3.2 Economic Dispatch Formulation 

Dispatching provides set points for regulatory action applied to the 

generating units operating within a controlled system, in order to allocate 

generation on an optimal basis so that an objective function is satisfied subject 

to obejdng a set of fundamental constraints. Although economics are still the 

dominant factor and minimization of the operating costs is the ultimate 

objective, imposing additional constraints has resulted in the development of 

different dispatching practices involving emission constraints, fuel constraints, 

security constraints, etc. 

3.2.1 Unit Modeling 

The hourly fiiel input to a generator is a fimction of its power output. 

Several mathematical functions have been used to model this quantity, such as 

quadratic, full and reduced cubic, polynomial, exponential, combinations thereof  ̂

etc. This function may also consist of one or more segments, each segment being 

modeled by an appropriate mathematical expression. Oftentimes, the original 

nonlinear fimction is approximated, through appropriate segmentation, by a set 

of linear fimctions. Reduced cubic fimctions are used in this work to model fiiel 

input. The main advantage of the reduced cubic formiilation is that its first 
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derivative is a monotonically increasing, nonlinear function, which is a desirable 

property - as well as necessary for many solution algorithms — in order to more 

realistically represent actual nonlinearities of the incremental &el rate. The 

quadratic term is omitted to avoid possible negative slope regions. The reduced 

cubic formulation for fiiel consumption of the i  ̂unit during the time period 

(hour) is given by 

(Eq.3.1) 

where all the coef&dents have positive, non-zero values, .̂ > 0. The values of the 

fuel equation coef&dents are based on (1) initial design, (2) acceptance testing, 

and (3) periodic testing. In the ^ture, a fovirth method, continuoiis monitoring, 

may be utilized although it has been tried in the past without much success. The 

accuracy of the fuel consumption representation as well as the associated costs 

improve firom method 1 to 3. The corresponding hourly operating cost of each 

generating unit is the product of the fuel consiuned and the associated fuel price 

C,-F,,.U, (Eq.3.2) 

The objective of economic dispatch is to minimize total operating cost, 

which is the sum of individual unit costs taken over all units operating within the 

system over the dispatch period. In some planning applications, multiple periods 

are involved, which was the case considered during this research work, and the 

goal is to minimize the total operating cost over the entire set of time periods. If 

no change in commitment patterns is considered, the objective is given by 

G H 

minimize IICu (Eq. 3.3) 
i=l j=l 

Since the second derivative of unit fuel cost is positive over the entire range of 

power output vsdues, the objective function is a convex function. 
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3.2.2 Additional Constraints 

Each generating unit on automatic control must be operated between its 

minimum and maximum power output limits 

(Eq.3.4) 

If transmission losses are neglected, the total generation for a lossless islanded 

system in each hour must equal the forecasted system load 0[>ower required) 

during that hour 

iPu = If (Eq.3.5) 
t=l 

In general, power generation requirements for a given hour are the sum of the 

forecasted system load during that hour plus die power system losses plus the 

scheduled power sales minus the scheduled power purchases 

pR _ pLOAD ptOSSES pPUSCHASES _ pSALES g 

The set of Equations (3.3)-(3.6) constitutes the mathematical formulation 

of the basic economic dispatch problem used in this research. This basic model 

can be largely expanded incorporating more "real world" limitations. In the next 

sections, additional constraints are included in the basic model and they 

transform it into a fuel-constrained dispatch model. 

3.3 Cost Minimization using Fuels with Escalating Prices 

3.3.1 Problem Formulation 

The basic economic dispatch model assumes each unit's fiiel prices are 

fixed at single levels. This approach, i.e., associating a single level fuel price with 

each iTpe of fuel, has been a common practice in the past. Moreover, those prices 

were independent of the amoimt of fuel consumed. 
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Today, utilities are not limited in their selection of &iel suppliers. Rather, 

they have access to several fiiel markets and are firee to request bids and accept 

offers for fuel purchases at the prevailing market prices. They have the ability to 

renegotiate or buy out existing contracts if their prices do not deem to be 

competitive. Individual fuel contracts often consist of multiple blocks, each block 

being associated with a different price. Usually the first block is more expensive 

and prices decrease as more fiiel is acquired. The first block must be entirely 

consumed before the second block becomes available. Li this way, the utility-

customer is tempted to increase the purchased amount of fiiel &om a single 

contract in order to realize increased savings by bu3dng cheaper blocks of fuel. 

Since utilities have to completely use a block of fiiel before they may use the next 

block, the consimiption of blocks within a contract is serially prioritized. Some of 

the lowest numbered blocks may require a TnimTmim amount to be consumed 

(take-or-pay clause). The situation is complicated since utilities may enter into a 

variety of contractual agreements, Le., utilities have access to multiple fuel 

suppliers in order to obtain the best price and provide redundancy. Figure 3.1 

shows a typical fuel contract structure. 

The problem that utilities &ice, given a forecasted load and a set of 

available contracts, is how much fuel to purchase firom each source and how to 

merge the available contracts in order to assure miniTnuTn fuel cost. This 

problem is mathematically formulated as follows for the m  ̂ block in the k  ̂

contract: 

K Bk 
minimize (Eq.3.7) 

k=lin=l 

where Equation 3.7 represents the total cost of all fuel contracts used, 

subject to 

(Eq.3.8) 
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Fuel Block Price 
Required Minimum 

(MBtu) 

Maximum Available 

(MBtu) 

1 1.35 30,000 50,000 

2 1.20 50,000 

3 1.15 50,000 

4 1.12 75,000 

5 1.10 75,000 

Figure 3.1 Typical Configuration of a Fuel Contract 

where Equation 3.8 represents the maximum available fud limit constraint for 

block m of contract k, 

= W (Eq.3.9) 
IE=1 111=1 

where Equation 3.9 represents the fact that the total fuel used should exactly equal 

the actual system fuel needs including any storage replacements, 

= 1= = 1 K, m = 2 Bi (Eq.3.10) 

where Equation 3.10 models the constraint that a fuel block is used after the 

previous blodts within the same contract have been used. 

3.3.2 Optimal Ordering of Fuel Contracts 

The optimal ordering of fuel contracts, as expressed mathematically in the 

previous section, is a nonlinear problem. A complete enumeration based 

mechanism has been developed and is explained in this section. This mechanism 

has undergone evaluation and testing using a proof-of-concept, dynamic 

progarmming based software [37] to compare respective output results. 
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Fuel blocks are divided into those that have a TniniTniim required fuel take 

(take-or-pay blocks) and those that do not. Utilities are expected to pay the, cost 

of a take-or-pay ftiel block regardless of actually accepting its delivery or not. 

Under this type of penalty, it is always to the utility's benefit not to violate fuel 

contracts and to consume or store at least the mimTniiiTi required quantities (if 

any). If a contract violation occurs and is detected, fuel prices are adjusted. By 

means of pseudo fiiel prices, the required fuel take is "forced" to be consumed. 

If multiple minimum required quantities exist within a set of fiiel 

contracts, they are sorted to be used in a decreasing price order starting with the 

highest price quantity. This ordering does not make any real difference under the 

current model of the penalty costs, explained in the previous paragraph. However, 

this ordering seems to be the optimal one in different, less strict models of the 

penalty costs, in which utilities might need to pay a portion only of the costs of 

the unaccepted minimum required quantities. If such a penalty model is selected, 

the appropriate terms may need to be added to the objective fimction of the 

problem, reflecting the effects of the penalty cost provisions on the total system 

cost. However, under the ciurent penalizing assumptions, such terms are 

unnecessary and the objective function is as presented in t^e previous section. 

In order to develop a composite fiiel block ordering for the remaining non 

take-or-pay fuel blocks, all possible combinations of fuel blocks are considered. 

The assimiption that blocks within the same contract are consumed in a strictly 

serial manner must be taken into account during that process. The cumulative 

fuel costs are then calculated and tabulated for all possible combinations and for 

certain levels between minimum and maximum fuel consmnption. The chosen 

levels include a maximiun common step size between blocks in all contracts. Not 

all of these points are of any interest, however. Costs need to be calculated at 

those constmiption levels where a ^el block is totally consumed. From such a 
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table, the optimal ordering of fuel blocks is easily traceable as a ftmction of fuel 

consumption. As a last step, costs at break-even points between different 

combinations must be calculated when a switch between combinations occurs. 

These break-even points are the actual constmiption levels where it is more 

economical to switch from one contract to another, hi all test cases evaluated 

(approximately 100 different cases), the initially very large number of possible 

combinations finally collapses to a small number of patterns. 

If there exists a take-or-pay fuel block for which the required Tm'niniinn 

fuel quantity is less than the maximum available fiiel quantity of that block, 

then the block is effectively split into two (sub)blocks. The first one will include 

the minimum required quantity and wiU be ordered as a take-or-pay block. The 

second one will include the remaining portion of the fiiel (maximum minus 

required minimum) and will be ordered as a non take-or-pay fuel block. 

Contract ordering is an one time activity and need not be repeated as long 

as no contract data is modified or the contract time period is not changed. 

Grenerally, the time period used for billing in fuel contracts is one month. 

Decisions involving periods of different lengths of time require the appropriate 

prorating of the contract data. Once an ordering is established, the fuel 

consumption levels corresponding to a dispatch schedule are compared against 

the contract sequence to determine whether the appropriate fiiel incremental 

prices have been used in dispatch calculations. In case of a discrepancy, fuel 

prices are updated and dispatch calculations are repeated using the new set of 

fiiel incremental prices. This process iterates until fuel prices and corresponding 

fiiel visage are in agreement with the optimal contract sequence. 

The same problem can also be solved by means of several optimization 

methods. As already stated, a d3mamic programming based program was used 
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for comparison reasons. Also, modeling software, such as GAMS and AMPL, 

could be used to set up and solve models of this problem. 

3.3.3 A T3n;»ical Elxample 

A typical problem is presented in this section to demonstrate the process 

that leads to tiie optimal consumption ordering of multiple fuel contracts. 

Assume that a group of units has access to the three fiiel contracts tabulated in 

Table 3.1. Appljdng the ordering mechanism, the various fiiel blocks are ordered 

optimally as shown in Table 3.2. Given the forecasted load, this group of units 

will consume the amoimt of fuel corresponding to that load level. The fuel data 

shown in Table 3.2 are actually used as fiiel input for some of die imits in the 

test cases presented in a later section. 

3.4 Dispatching with Limited Fuel Supplies 

Although the contract ordering does enhance the basic dispatch model, 

described by Equations (3.3)-(3.5), by providing an optimally arranged escalating 

fuel price schedule, the dispatch model can be further expanded to accommodate 

situations of constrained fuel supplies, such as take-or-pay fuel blocks or limited 

availability of certain types of fiiel [38]. To accomplish this, the power system is 

partitioned in/ue/ groups. A fuel group is defined as an all inclusive set of units 

or power plants having access to a particular set of contracts or a particular type 

of fuel. The concept of fuel groups was originally proposed by Lamont et al. [15] to 

identify subsections of fuel networks in order to decouple complex natural gas 

supply networks into more tractable parts. This concept was e^anded in this 

work. The focus is no longer on fuel networks; rather it is on the modeling of the 

fuel supply contracts and their impacts. Once the system is partitioned in fuel 
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Table 3.1 Fuel Input Data for Multiple Fuel Contracts 

Fuel Block Required Minimum Available Maximum Price 

A1 200,000 200,000 1.436 

A2 50,000 250,000 1.384 

A3 300,000 1.311 

A4 400,000 1.286 

B1 75,000 100,000 1.442 

B2 120,000 1.323 

B3 160,000 1.281 

B4 220,000 1.154 

CI 25,000 50,000 1.488 

C2 100,000 1.445 

C3 250,000 1.337 

C4 350,000 1.250 

Totals 350,000 2,500,000 

groups, an optimally ordered fuel contract sequence is associated with each fuel 

group. TVo limiting cases are considered. First is the case when there exists a 

minimum required fuel quantity that must be consumed (take-or-pay blocks). 

Second, the case when the available quantity of a particular fuel group is severely 

constrained (over-the-limit consumption). These two cases are described by 

(Eq.3.U) 
ic4 ^1 

(Eq.3.12) 
ied pi 
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Table 3.2 Optimal Ordering of the Fuel Blocks of the Typical Example 

Fuel Quantity Cumulative Fuel Cost Incremental Fuel Price 

25,000  ̂ 501,750 N/A 

100,000 501,750 N/A 

300,000 501,750 N/A 

350,000 501,750 N/A 

398,770 569,248 1.384 

495,000 696,560 1.323 

655,000 901,520 1.281 

875,000 1,155,400 1.154 

1,075,000 1,432,200 1.384 

1,375,000 1,825,500 1.311 

1,433,333 1,900,516 1.286 

1,600,000 2,108,850 1.250 

1,661,224 2,193,584 1.384 

1,775,000 2,339,900 1.286 

1,800,000 2,377,100 1.488 

1,863806 2,469,300 1.445 

2,100,000 2,778,950 1.311 

2,500,000 3,293,350 1.286 

' Take-or-pay fuel blocks in italics 

respectively. Including the above two equations in the constraint set of the basic 

dispatch model and requiring additionally that dispatch results conform with the 

optimal fiiel contract ordering, provides an enhanced fuel-constrained model. 

The Lagrangian of the new model is given by 
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G B H G 

G G 

£nr(P,-i?^)+£nr(p^°'-p.)+ (Eq. 3.13) 
isl 
O H O H 
ZnUlSFu-fD+IrtCST-SLFu) 

i€* 

For those fuel groups, whose foel consumption is within limits, the 

associated multipliers and will be equal to zero. This includes the case 

when fiiel constraints don't exist. Whenever a ftiel consumption constraint is 

binding, the corresponding multiplier takes a nonzero value. 

Classical optimization dieory provides an abundance of possible 

approaches to solve a nonlinear problem. Two large groups of these methods are 

the primal and the dual methods that treat the primal or the dual formulation of 

the problem respectively. La the case of linear programming, methods are 

analogously classified ais row generation - analogous to primal — and column 

generation — analogous to dual — techniques. Several excellent optimization 

books are available that address both the linear and nonlinear cases 

[39,40,41,42]. Dual approaches are price directive in tJie sense that the 

optimization process depends on the updating of ''shadow prices" or objective 

function wei^ting coefGdents. This can be accomplished by the use of the 

convenient concept of the Lagrangian multipliers. As is e^lained in the relevant 

literature, the economic interpretation of the Lagrangian multipliers is that they 

correspond to marginal prices, i.e., prices associated with small variations in the 

constraining fimctions. Li the case of multiple constraints, a decomposition and 

coordination scheme is developed and a series of smaller-sized subproblems are 

3.5 Solution Algorithm 
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solved iteratively. Such a sequence leads to an optimal solution point if such a 

point exists. 

A flowchart for the overall solution algorithm is shown in Figure 3.2. The 

optimal contract ordering is handled as an initial pre-dispatching step. The 

initial dispatch is performed using arbitrary incremental fuel prices and at its 

completion, the fiiel consumption levels of the various fuel groups are compared 

against the optimal contract sequence to determine if the appropriate 

incremental fuel prices were used. If violations are detected, the incremental fuel 

prices are updated and the procedure iterates until the fuel consumption levels 

for all fuel groups and the incremental fiiel prices used in the dispatch process 

converge and are in accordance to the optimal contract ordering. This completes 

the first phase of oiur solution algorithm. Loitially, all Lagrangian multipliers are 

assumed to be equal to zero, Le., their respective constraints are not binding. At 

the completion of the first phase, optimal values fbr all are found as well as 

optimizing values for and 

Since Lagrangian multipUers may be viewed as the price to pay to satisfy 

the corresponding constraints, the multipliers and act as pseudo 

incremental prices, reducing or increasing the relative price of a particular type of 

fueL The incremental price for a fiiel groiq) may be reduced to increase its fuel 

consimiption and thus, satisfy take-or-pay requirements. Conversely, it may be 

necessary to increase a fuel contract's incremental price to limit its consumption, 

thus, bringing it within the available quantities. 

After the first phase, take-or-pay or over-the-Umit consumption 

constraints are addressed [38]. The problem is decomposed following the 

physical partitioning of the power system into fuel groups. For each fiiel group, 

one of the two possible types of violations may occur, but obviously not both of 

them at the same time. Fuel groups are checked sequentially and all violations 
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Figure 3.2 Fuel-Constrained Dispatch Solution Flowchart 
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are handled accordingly. In that sense, there are no priorities in the order a 

violating fuel group enters the active constraint set. Once a violation is detected, 

the corresponding multipUer needs to be updated. This updating is performed 

using a single-dimensional search algorithm. The bisection algorithm was used 

in this work, but other search schemes, such as the secant search algorithm, 

could be used as welL The search range is defined considering the cheapest and 

most expensive fiiel prices within the power system. Once a pseudo fiiel price is 

determined that satisfies the violated constraint, the violation check continues 

with the next fuel group and so on. However, it is clear that updating the pseudo 

incremental price of a fuel group may cause deviations in the consumption of 

groups that have been already checked. These groups need to be rechecked and 

their pseudo incremental prices need to be readjusted considering however, the 

updated values of the remaining Lagrangian multipliers. This whole iterative 

process cycles as necessary until all violations are corrected. 

An alternative approach to search for violations is by t3i)e of violation. 

Obviously, over-the-limit consumption violations are more serious and need to be 

addressed first, since the generating units in violation are in need of fuel suppUes 

that are not physically available. On the other hand, take-or-pay violations have 

an end result of increasing the operating costs of the system. An additional 

refinement is to treat violations within each group of violations based on their 

"magnitude". It is our experience that in some test cases, correcting a few, 

relative large violations, simultaneously took care of several of the constraints of 

the opposite type. This type of behavior makes this alternative violation check 

more advantageous. 

At this point, the second phase of the solution algorithm is completed. 

However, additional iterations between phases I and H may be necessary, since 

satisfying some fuel constraints may have caused violations in the observance of 
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the optimal contract ordering. The process iterates between the two phases until 

the two objectives are met. Namely, to observe the optimal fuel contract 

utilization sequence, and to satisfy the applicable fiiel constraints. 

A special note is in place at this point. The fuel prices that are fed from the 

optimal contract sequence to the dispatch module, are real — as opposed to 

pseudo - fuel incremental prices. As Gibson et al. pointed out [36], incremental 

prices, i.e., the price to pay for the next available unit of resources, are the 

appropriate prices fbr dispatch calculations. So, whereas updating the 

Lagrangian multipliers is the process to satisfy the problem constraints, 

updating the fiiel prices enforces an optimally ordered fiiel price schedule and 

thus guarantees an optimal and consistent dispatch schedule. 

3.5.1 Implementation Considerations 

Caution must be exercised while updating the multipliers. The bisection 

method was chosen in our implementation of the proposed algorithm,* other 

search schemes may be used as well. If mtiltipliers are overadjusted, Qrding may 

occur. Fixing the price of the corresponding fuel at the midpoint level between the 

two qrcling extremes for a niunber of iterations, appears to take care of Qrcling 

problems. Cycling may also occur as a result of very uneven price schedules of the 

various optimal foel consimiption orderings. To achieve convergence cycling prices 

need to be fixed at the midpoint of the Qrcling range, for a ntunber of iterations. 

If multiple fuel limits of different time horizons are to be simultaneously 

imposed, they may need to be prorated to fit the dispatching time horizon. 

Clearly, this is not a concern if the period of time associated with the fuel limits 

is smaller than the simulation horizon. 

Production costing is based on fuel consumption per fuel group and 

operating costs are accurate when calculated for the entire simulation horizon. 
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Subsequently, prorated hourly or per generating unit fiiel costs can be calculated 

based on relative fiiel consumption. Obviously, this is not a problem in the 

degenerate cases when the simulation horizon is a single time period and each 

ftiel group consists of a single generating unit. The fiiel cost calculations in the 

post solution production costing must consider i) die order in which fiiel firom 

various contracts is consumed, ii) the required block order within each contract, 

and iii) the actual fuel price associated with each fuel block. 

3.6 Numerical Results 

3.6.1 Unconstrained Base Cases 

The test system used consists of 50 generating units whose data are 

tabulated in the Appendix. Tables Al, A2, and A3 contain the î el, NOx, and SO2 

unit coefficients. Table A4 contains additional modeling parameters, and Table 

A5 presents the commitment schedule. The test system is divided in 12 power 

plants and 12 fuel groups whose configuration is shown in Table A6. The 

simulation horizon is 168 hours and Figure Al shows the load profile. Load 

values are presented in Table A7. The necessary software programs were 

developed in FORTRAN and all test cases were executed on a HP Pentium at 

166 Mhz. Table 3.3 shows detailed output results firom dispatching the system 

economically. 

Using objective fimctions that model quantities other than cost, results in 

different types of dispatches. Instead of Equation (3.3), which is the objective 

function for economic dispatch, nn'm'iniini NOx dispatch minimizes total system 

NOx emission and its objective function is given by 

G H 

minimize XZNi.i (Eq.3.14) 
i=l j=l 
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Mmimum SO2 dispatch minimizes total system SO2 emission and its objective 

function is given by 

G H 

SSSy (Eq. 3.15) 
1=1 i=i 

Models for Ny and Sy are presented in the next chapter. Minimum fuel dispatch 

minimizes total system fiiel use and its objective fonction is given by 

G H 

TtiiniTniy-P S2Fy (Eq. 3.16) 
i»l i=l 

The above types of dispatching are subject to the usual dispatch constraints, 

given by Equations (3.4)-(3.6). Since they are subject to no additional 

constraints, these dispatch cases are considered unconstrained base cases. They 

were used to define reasonable limits for the constrained cases that are 

presented in later chapters of this document, as well as to provide a basis of 

comparison with results fix)m constrained dispatches. Results firom these base 

cases are simunarized in Table 3.4. 

3.6.2 Fuel-Constrained Cases 

The imconstrained base cases of the previous section used the fuel prices of 

Table A4 in the dispatching calculations. Ih the remainder of this chapter, the 

system is partitioned in 12 fiiel groups, each group having access to different fuel 

supplies. Groups 1, 2, 3, and 12 have access to sin^e price fuel supplies, whereas 

groups 5, 6, and. 8 have access to single contracts. Each of the remaining fiiel 

groups, i.e., 4, 7, 9, 10, and 11, has access to multiple fiiel contracts, which are 

ordered according to the optimal consumption sequence described previously. 

Fuel group 4 has access to the fiiel blocks shown in Table 3.1 and are optimally 

ordered in Table 3.2. Fuel input data for the remaining fiiel groups are shown in 

Tables 3.5-3.7. 
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Foiir different test cases were run to demonstrate the characteristics of the 

fuel constrained dispatch. The first case is a dispatch with no take-or-pay 

requirements or over-the-limit constraints. The difference between this dispatch 

and the economic dispatch, whose results appear in Table 3.3, is die set of fuel 

prices used, as explained in the previous paragraph. This difference is reflected in 

the resulting system total costs. The second case enforces a take-or-pay 

requirement, the third case enforces an over-the-limit constraint, and the fourth 

case enforces both constraints simultaneously. The test cases are simimarized in 

Table 3.8. Output results are summarized in Table 3.9 and detailed residts from 

the fourth case are shown in Table 3.10. The first two rows of Table 3.9 present 

system results firom the economic and minimmn fuel dispatch base cases, for 

comparison reasons. As the results clearly demonstrate, the constraints are 

satisfied within the desired tolerance while the optimal fuel ordering for each 

fuel group is observed. It is interesting to note how the system total costs 

increase the more fuel constraints are applied. 

3.7 Chapter Summary 

This chapter discussed the fuel-constrained dispatch problem. Power 

producers have access to multiple fiiel contracts, each one usually consisting of 

multiple fiiel blocks with escalating price profiles. An optimization procedure 

was presented, which orders multiple fuel contracts with multiple fiiel blocks in 

optimal consumption sequence. Take-or-pay contractual agreements and over-

the-limit fiiel constraints were discussed. The presented fiiel-constrained 

dispatch accounts for these issues. A number of test cases were run and their 

results are summarized, to demonstrate the characteristics of the fuel 

constrained dispatch algorithm. 
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Table 3.3 Economic Dispatch Output Results 

Power Fuel Cost SO2 NOx 

Unit Results 

1 3000.00 37690.19 48771.10 17.644 17.998 

2 3047.12 38494.96 49812.38 20.874 18.152 

3 3004.38 38223.82 49461.74 8.726 18.604 

4 6549.58 73867.08 92186.16 26.032 31.091 

5 4552.67 51209.27 63909.38 17.521 29.975 

6 20805.32 187897.38 234495.95 73.219 43.843 

7 10290.12 105363.19 131493.16 37.064 28.813 

8 3016.47 36257.80 47388.98 19.871 15.308 

9 16790.48 158334.50 206943.23 37.900 17.780 

10 14386.64 136970.77 179021.00 53.896 14.778 

11 15314.91 147569.59 194939.70 38.648 20.290 

12 15754.90 153003.08 202116.70 39.308 20.825 

13 23007.26 214102.80 282829.72 56.002 21.266 

14 22762.39 214307.64 283100.47 54.974 20.994 

15 45575.77 393568.22 519903.78 190.144 84.549 

16 44125.85 379127.22 500826.88 184.808 79.555 

17 3005.18 36233.93 48336.00 10.529 15.291 

18 6096.30 62220.67 83002.39 20.216 31.148 

19 5533.90 57959.68 77318.15 22.846 24.291 

20 5977.71 60503.78 80712.03 22.662 24.833 

21 2166.26 26254.35 33553.05 6.873 6.665 

22 5373.49 60723.64 77604.79 22.595 28.637 

23 6464.02 70976.45 90707.82 27.295 29.745 
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3.3 (continued) 

Power Fuel Cost SO2 NOx 

16844.58 163144.69 208498.73 67.536 85.211 

7518.19 89341.25 114178.11 31.727 22.487 

54105.59 470854.06 601751.25 192.865 107.008 

4532.50 47130.85 60091.86 16.682 16.107 

12000.91 126883.72 161777.14 48.390 23.465 

15460.48 155824.17 198675.61 42.341 10.866 

16417.11 167295.73 213302.09 40.749 12.246 

11783.58 128024.85 173345.97 31.135 6.602 

11345.45 125856.41 170409.70 29.599 6.522 

29410.68 264078.78 357563.13 154.830 54.468 

33959.68 304915.63 412855.16 178.334 64.517 

3946.76 42599.86 55166.81 8.676 8.064 

3910.23 42870.83 55517.68 8.436 8.423 

960.00 14628.55 18943.98 4.190 5.479 

2160.00 25296.10 32758.42 6.503 7.171 

2539.66 30276.61 37391.62 6.621 13.755 

2510.68 30113.52 37190.18 6.867 14.817 

3911.57 45199.14 55820.98 12.187 7.767 

3455.44 40585.63 50123.21 10.749 7.121 

13050.68 144904.19 193592.44 53.769 26.212 

21122.74 188487.08 251818.77 62.560 46.597 

49903.21 410242.53 548083.94 254.262 103.640 

58189.98 450799.00 602267.31 297.152 119.307 

11189.72 108645.44 146997.06 40.467 46.836 

12473.09 119349.71 161480.25 48.179 47.736 
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Table 3.3 (continued) 

Power Fuel Cost SO2 NOx 

49 15569.66 143840.16 194615.86 63.355 15.894 

50 15246.66 151829.59 205424.92 60.844 15.626 

Fuel Group Results 

1 9051.50 114408.95 148045.22 47.243 54.754 

2 42197.68 418336.91 522084.66 153.835 133.722 

3 34193.59 331563.06 433353.22 111.667 47.866 

4 166541.09 1501678.63 1983717.25 563.885 247.478 

5 20613.10 216918.06 289368.56 76.253 95.563 

6 92472.13 881294.44 1126293.75 348.891 279.753 

7 48411.00 497134.50 633846.75 148.161 62.684 

8 86499.39 822875.69 1114174-00 393.898 132.110 

9 10976.99 125395.33 162386.91 27.805 29.137 

10 12417.34 146174.91 180526.00 36.424 43.460 

11 142266.61 1194432.75 1595762.50 667.742 295.756 

12 54479.13 523664.91 708518.13 212.845 126.093 

System Results 

720119.56 6773877.50 8898077.00 2788.650 1548.375 
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Table 3.4 Output Results from Unconstrained Base Case Dispatches 

Dispatch Power Fuel Cost SO2 NOx 

economic 720,119.56 6,773,877.50 8,898,077.00 2,788.650 1,548.375 

min NOx 720,119.20 7,038,215.00 9,225,414.00 2,709.353 1,329.177 

minSOa 720,119.20 7,068,135.00 9,263,622.00 2,474.466 1,557.807 

min fuel 720,119.31 6,767,508.50 8,905,795.00 2,803.833 1,543.787 

Table 3.5 Input Fuel Data for Fuel Groups 1, 2, 3, and 12 

Fuel Group Maximum Available Fuel Price 

1 250,000 1.294 

2 450,000 1.248 

3 450,000 1.307 

12 1,000,000 1.353 

Table 3.6 Input Fuel Data for Fuel Groups 5, 6, and 8 

Fuel Group 5 Fuel Group 6 Fuel Group 8 

Quantity Price Quantity Price Quantity Price 

95,000 1.422 225,000 1.440 70,000 1.471 

170,000 1.349 450,000 1.398 185,000 1.418 

210,000 1.334 675,000 1.372 275,000 1.326 

265,000 1.275 900,000 1.275 395,000 1.273 

300,000 1.246 1,125,000 1.246 500,000 1.237 

1,315,000 1.228 

1,500,000 1.115 
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Table 3.7 Input Fuel Data for Fuel Groups 7, 9,10, and 11 

Fuel Group 7 Fuel Group 9 Fuel Group 10 Fuel Group 11 

Quantify Price Quantity Price Quantity Price Quantity Price 

50,000 1.417 30,000 1.406 275,000 1.255 25,000 1.447 

87,838 1.311 51,923 1.343 350,000 1.208 75,000 1.406 

125,000 1.274 79,688 1.317 370,526 1.263 150,000 1.288 

225,000 1.160 135,000 1.189 375,000 1.244 244,643 1.204 

365,000 1.110 210,000 1.141 400,000 1.263 250,000 1.176 

415,000 1.417 216,497 1.425 275,000 1.447 

480,000 1.311 240,000 1.131 325,000 1.406 

560,000 1.203 270,000 1.406 400,000 1.288 

660,000 1.127 315,000 1.343 500,000 1.204 

699,121 1.440 375,000 1.189 561,411 1.472 

705,000 1.150 450,000 1.141 750,000 1.185 

745,429 1.417 490,000 1.449 770,994 1.497 

759,718 1.382 540,000 1.314 775,000 1.185 

788,563 1.311 600,000 1.262 825,000 1.406 

875,000 1.231 675,000 1.189 900,000 1.288 

1,000,000 1.150 994,643 1.204 

1,000,000 1.176 

1,025,000 1.447 

1,075,000 1.406 

1,150,000 1.288 

1,350,000 1.204 
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Table 3.8 Fuel-Constrained Dispatch Test Cases 

Case Fuel Group Minimum Maximum 

1 no take-or-pay or over-the-limit constraints 

2 10 275,000 

3 9 675,000 

4 9,10 275,000 675,000 

Table 3.9 Summary of System Output Results firom Fuel-Constrained Test Cases 

Case Power Fuel Cost SO2 NOx 

economic  ̂ 720,119.56 6,773,877.5 8,898,077.0 2,788.650 1,548.375 

minfuel  ̂ 720,119.31 6,767,508.5 8,905,795.0 2,803.833 1,543.787 

1 720,119.44 6,777,571.5 8,857,404.0 2,829.886 1,562.456 

2 720,119.50 6,778,204.5 8,880,673.0 2,830.225 1,562.277 

3 720,119.44 6,775,485.0 8,858,618.0 2,816.739 1,557.378 

4 720,119.56 6,776,144.0 8,881,828.0 2,817.252 1,557.269 

 ̂ base case results for comparison reasons only 
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Table 3.10 Output Results from Test Case 4 

Power Fuel Cost SO2 NOx 

Unit Results 

1 3000.000 37690.188 147428.56 17.644 17.998 

2 3002.615 38061.910 148882.59 20.782 18.101 

3 3000.000 38180.336 149345.82 8.717 18.599 

4 5540.957 64607.910 720722.81 22.540 30.331 

5 4500.958 50686.344 565423.06 17.343 29.935 

6 16639.168 151619.531 1691366.50 58.808 38.145 

7 6915.236 73305.219 817744.18 25.970 24.187 

8 3000.000 36098.117 339186.62 19.842 15.283 

9 13341.177 129168.734 1213700.63 31.509 13.439 

10 11168.024 109217.977 1026238.50 46.184 11.065 

11 16607.605 159258.781 5029298.00 41.668 22.252 

12 17031.723 164513.734 5195246.00 42.322 22.831 

13 23580.197 219407.125 6928747.00 57.469 22.437 

14 23352.209 219756.219 6939771.00 56.484 22.191 

15 46055.336 397902.500 12565525.00 192.086 86.287 

16 44689.188 384305.406 12136137.00 187.294 81.792 

17 3023.442 36409.395 214359.45 10.574 15.319 

18 6035.426 61779.902 363727.71 20.095 30.861 

19 5546.266 58109.121 342116.09 22.982 24.320 

20 5983.644 60595.441 356754.25 22.786 24.843 

21 2160.000 26191.869 192494.23 6.856 6.654 

22 5270.145 59719.828 438904.21 22.419 28.546 

23 5680.278 63743.980 468479.28 25.740 29.056 
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Table 3.10 (continued) 

Power Fuel Cost SO2 NOx 

24 15159.972 149471.047 1098520.88 60.735 73.244 

25 7500.000 89159.000 655264.12 31.692 22.426 

26 47820.094 417742.438 3070151.50 173.170 88.012 

27 4828.469 49912.648 433539.00 17.889 17.287 

28 12024.441 127123.500 1104189.00 48.477 23.510 

29 16332.491 164103.672 1425397.13 44.554 12.566 

30 17064.527 173324.719 1505490.63 42.426 13.320 

31 11551.672 125931.063 1234790.50 30.584 6.356 

32 11293.133 125367.953 1229269.13 29.478 6.461 

33 34869.137 311855.375 2036400.75 181.187 65.835 

34 40692.938 363153.656 2371376.00 211.578 81.600 

35 4034.843 43412.195 146149.11 9.113 8.576 

36 4016.093 43848.633 147618.41 8.933 9.076 

37 960.000 14628.547 49247.66 4.190 5.479 

38 2194.230 25649.605 86350.55 6.594 7.236 

39 2576.156 30648.223 103178.62 6.744 13.788 

40 2552.663 30540.137 102814.75 7.000 14.855 

41 3901.266 45128.406 151926.81 12.171 7.797 

42 3508.144 41121.273 138436.62 10.933 7.191 

43 15301.605 166034.656 1728797.25 62.401 30.391 

44 25848.684 229084.609 2385290.25 75.769 54.297 

45 54292.684 446069.031 4644590.00 274.617 114.297 

46 58214.988 450979.500 4695719.00 297.279 119.360 

47 9944.100 98006.625 380063.28 36.771 45.479 

48 11072.371 107624.352 417360.18 42.918 46.189 
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Table 3.10 (continued) 

Power Fuel Cost SO2 NOx 

49 14032.854 130716.633 506910.56 57.931 14.974 

50 13408.391 135177.531 524209.62 54.013 13.195 

Fuel Group Results 

1 9002.615 113932.430 147428.56 47.142 54.698 

2 33596.316 340219.000 424593.31 124.660 122.598 

3 27509.201 274484.813 358751.65 97.534 39.787 

4 171316.250 1545143.750 2040279.50 577.322 257.790 

5 20588.777 216893.859 298414.65 76.436 95.343 

6 83590.484 806028.125 1114310.88 320.611 247.938 

7 50249.930 514464.531 636725.81 153.345 66.682 

8 22844.805 251299.016 353952.50 60.061 12.817 

9 75562.078 675009.000 843465.68 392.765 147.436 

10 23743.396 274977.031 367715.00 65.677 73.998 

11 153657.953 1292167.750 1658245.00 710.066 318.345 

12 48457.715 471525.125 637973.50 191.632 119.838 

System Results 

720119.563 6776144.000 8881855.75 2817.252 1557.269 
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4. EMISSION-CONSTRAINED DISPATCH 

This chapter addresses the dispatch problem when environmental 

limitations are imposed. The first section of die chapter provides a 

comprehensive literature review. The second section presents the formulation of 

the minimum emission dispatch problem. The l^iird section addresses the 

emission constrained dispatch problem and the fourth section discusses a 

proposed approach to solve it. The fifth section presents numerical results. The 

final section provides a chapter summary. 

4.1 Literature Review 

Emission dispatching strategies first appeared in the relevant literature 

in the ISTCs. Those strategies can be divided into two broad categories: i) 

methods minimizing emissions [43,44], and ii) methods minimizing cost subject 

to emission constraints [45,46,47,48]. Ih otiier words, emission constraints may 

appear either in the objective fimction after being monetized through appropriate 

conversion factors, or in the constraining set. Reference [49] provides a good 

review of the emission related literature of the 1970's and the 1980's. 

Passage of the 1990 CAAA renewed interest in emission di^atch and a 

new set of literature emerged. Talaq et al. [50,51] presented the minimum 

emission power flow. Emission constraints were incorporated in the conventional 

OFF formulation and the objective function included operating and emission 

costs in a multiobjective optimization formulation. The tradeoffs between the 



www.manaraa.com

67 

objectives were also studied. Sensitivity analysis was applied to the results of 

the minimuTn emission power flow. The analysis included the effects on the 

problem variables and the optimal solution from variations of parameters, such 

as system demand, emission limits, weighting factors, etc. Emission constraints 

in OPF is one of the topics treated in the paper Ramanathan tS2]. 

Additionally, a weighted dual objective approach is presented to solve the 

emission-constrained problem. The same author presented four additional 

simple approaches to the same problem [53]. Each individual method had its 

own merits and disadvantages. The incremental analysis deemed useful for 

initial transaction selection, in a scenario where energy transactions were 

considered. The graphical analysis was appUcable only on special cases, whereas 

the Taylor series analysis and emission constrained dispatching were suitable 

for exact calculations. Nanda et al. [54] presented the economic emission load 

dispatch problem. The objective function was modeled as a decision making 

problem, i.e., a compromise was sought between generation and pollution costs. A 

Gauss-Seidel variant was applied on the resultant coordinating equations and 

results were presented with and without line flow limitations. In their paper, El-

Kaib et al. [55] presented a general formulation of the enviroiunentally-

constrained economic dispatch. The underutilization provision of the CAAA was 

modeled as additional fuel bum constraints. The Lagrangian relaxation method 

was used to solve the problem using a Newton-Raphson variant to solve the 

resulting set of linear equations. The effects of the extra bum constraints were 

investigated and two alternative dispatching strategies were discussed; i) the 

compensating unit option, and ii) the compensating unit designation option. 

Lamont et al. [56] presented a strategy to solve the emission-constrained 

dispatch problem, based on the ratio of incremental emissions over incremental 

costs, together with a discussion of startup emission models. Comparing the 
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values of the ratio of the incremental quantities with the allowance market 

prices, provided insight on the profitability of increased allowance market 

involvement. Rau et al., in their paper [57], followed similar concepts to develop 

operating strategies under emission constraints. Althou  ̂they used the ratio of 

incremental costs over incremental emissions, they essentially arrived at similar 

conclusions as the previous approach. Augmented Lagrangian relaxation was 

used by Wang et al. [58] in their formulation. The Lagrangian of the problem was 

augmented by quadratic penalty fimctions. A decomposition and coordination 

technique was used to solve the optimization problem and the non-separable 

penalty terms were iteratively linearized around a suboptimal initial solution. A 

hierarchical structure was presented in the paper by Hu et al. [59], which used 

coordination between the off- and on-line subsystems to minimize a weighted 

average of the generation and emission costs. A cutoff point of relative cost 

increase versus relative emission decrease was defined and used as the ultimate 

termination parameter. The solution process might possibly be halted at an 

infeasible solution point with emission requirements not yet satisfied, if further 

emission reduction was deemed economically unprofitable. Emission and 

generation costs were jointly included in the objective function of the 

multiobjective formulation presented by Chen et al. [60] and by Wong et al. [61]. 

In the former approach, a feist Newton-Raphson scheme using a modified 

Jacobian matrix was proposed to solve the overall problem. In the latter 

approach, simulated annealing was the solution method used. In both 

approaches, a weighting equation linearly combined the emission and the 

generation costs to form a single objective fiinction. However, one of the main 

problems in several of the above mentioned approaches was how to monetize 

emissions in order for emissions to be expressed in monetary units and thus, be 
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included in the objective function. The use of emission allowances may provide 

indications for the magnitude of the conversion factors to be used. 

The optimal dispatch problem including environmental constraints was 

also solved by means of goal programming [62], linear programming [63], and 

d3mamic programming techniques [64]. The same problem was also formulated 

and solved through stochastic programming methods [65]. hi [66], an IEEE 

operating problems working group report, various utility personnel reported on 

the actions taken and strategies followed by their respective companies to 

comply with the legislative requirements. Interestingly, a strategy potentially 

suitable for one company, might be completely inappropriate for a different 

company. Finally, the review papers by Talaq et al. [67] and Eazibwe [68] 

provided good siunmaries of most of the classical optimization approaches taken 

to solve the emission-constrained dispatch problem so fiEir. 

Althou  ̂the emission dispatch problem has been successfully solved by 

many classical nonlinear optimization schemes, the biggest concern is that most 

of the presented methods can not be applied to real-time operation because of the 

long execution time reqtiirements. Thus, fast computational times during the 

implementation phase have become of increased importance. 

The same problem has been treated by many nonclassical optimization 

algorithms. King et al. [69] proposed a neural network model to solve the 

problem. A Hopfield neural network model was adopted and the solution 

sensitivity with respect to variations of the model parameters was analyzed. The 

Hopfield model is a single layer recursive neural networlc, in which the output of 

each neuron is connected to the input of every other neuron. There is also an 

additional external input connection to each neuron. Selection of the network 

parameters was of extreme importance to the solution optimality. A special 

technique, called momentiim, was used to improve the convergence rates. An 
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evolutionary algorithm, coupled with heuristics, was used in [70] to solve the 

emission dispatch problem. Li brie  ̂ evolutionary algorithms are a family of 

stochastic, iterative algorithms based on the concept of evolution. Heiiristics are 

often necessary to improve computational times. Stochastic operations, such as 

mutation, recombination, reproduction, and. selection, are used to ensure 

evolution. Genetic algorithms belong to this family of optimization schemes. Ih 

the approach presented, a multiobjective fiinction was optimized and tradeoff 

curves between costs and emissions were generated and analyzed. 

Reference [71] used an interactive search to achieve simultaneous 

satisfaction of both NOx and SO2 emission limits. It was recognized that careM 

coordination between successively constraining eadi pollutant was necessary 

because of the often competing objectives of reducing NOx and 802. The objective 

function used included the generation costs augmented with the emission 

constraints t^uroug  ̂ the use of emission dispatch prices. The basic solution 

approach included three stages: i) the feasibility check phase, ii) the phce 

identification phase, and iii) the price refinement phase. 

Chattopadhyay [72] presented a brokerage system that performed 

emission allowance trading as well as energy transactions. The model was solved 

with linear programming methods. Cost savings, realized fix)m trading, were 

allocated to participants according to a Shapley value based model. Although 

emission constraints did not formally enter the objective function, trading 

optimally allocated emission allowances so that aU environmental requirements 

were satisfied. In a relevant paper, Walsh et al. [13] discussed some of the 

reasons for the slow development of a full speed allowance market. These 

reasons included a lack of widespread understanding of the trading process, 

emission compliance plan time structure, and the still regulated nature of the 

utility industry. Deficiencies of the present auctioning system were presented 
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and alternative schemes were discussed. The paper indicated that, despite the 

few problems, overall, the emission trading program was a very positive 

experience. 

The emission-constrained, dispatch problem has attracted views and 

opinions from people outside the electrical engineering field. Relevant literature 

has appeared, in management, economics, pubHc poli^r, and operations research 

journals. Reference [73] discussed the integration of pollution control strategies, 

using linear models, to meet European emission standards. Cost effectiveness of 

the various scenarios was analyzed and the case of the then Federal Republic of 

Germany was presented as a test case. Petrovic et al. [74] discussed, the 

operations research aspects of the environmental power dispatch, both as a 

single and as a multiobjective optimization problem. The paper could serve as a 

good badcgrotmd review and provided, a list of interesting references dealing with 

the problem outside the United States. 

Emission compliance can be also viewed as part of a long-term integrated 

resource planning process. References [75,76,77,78] are representative papers 

considering the emission problem in that context. 

Finally, the emission-constrained scheduling problem may be also 

considered as a constraint satisfaction optimization problem [79]. Constraint 

satisfaction is a rather recently developed research area whose scope practically 

includes all problems studied in operations research. Constraint satisfaction 

introduces formal search techniques, but it also employs problem dependent 

heuristics. This approach has not been formally applied to the emission 

dispatching problem yet. However, constraint satLsfiaction is fast gaining 

popularity and it may provide potentially powerfiil alternative solution 

approaches to scheduling problems. 
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4.2 Minimum Emission Dispatch 

4.2.1 Emission Modeling 

The S02 and NOx emissions produced by each generating unit are, in 

general, fimctions of the unit's power output. Just like in the fuel input modeling 

case, discussed in section 3.2.1, several mathematical functions are potential 

candidates to model emission output. For reasons similar to the ones discussed 

in that section, the reduced cubic formulation was chosen to model unit emission 

output. SO2 emission output of the imit during the time period (hour) is 

given by 

4.2.2 Problem Formulation 

The objective of minimum emission dispatch is to minimize the total 

emissions, which are the sum of individual unit emission output taken over all 

units operating within the system over the dispatch period. In some planning 

applications, multiple periods are involved, which was the case considered during 

this research work, and the goal is to minimize the total emissions over the 

entire set of time periods. If no change in commitment pattern is considered, the 

objective is given by 

NOx emission output is given by 

In general, unit emission output is given by 

E..; = e.-, + e, uP+e, .Pf.- (Eq. 4.3) 

(Eq. 4.2) 

(Eq. 4.1) 

minimize 
G H 

(Eq. 4.4) 
i=l j=l 



www.manaraa.com

73 

Using the reduced cubic formulation, the second derivative of the imit 

emissions is positive over the entire range of power output values; thus, the 

objective function is a convex function. 

The remaining constraints of this t^pe of dispatch are the same as in the 

economic dispatch problem. Namely, eadi generating unit on automatic control 

must be operated within its TniTnmnm and maximum power output limits 

(Equation 3.4) and the total generation for a lossless, islanded system must 

exactly match the forecasted system load for each hour CBquation 3.5). Equation 

4.1 together with Equations (3.4)-(3.5) provide the mathematical formulation of 

the minimum emission dispatch problem. 

4.3 Dispatching with Emission Limits 

4.3.1 Emission Constraints 

Even though total system or company emissions over the entire simulation 

period are the most common emission constraint, it may be necessary or 

desirable to consider smaller periods of time, or subsets of generating units. The 

following four ts^pes of emission constraints were considered during this research: 

1) System emission limit over the entire simulation horizon. 

2) Plant emission limit(s) over the entire simulation horizon. 

3) System emission limit(s) for sin^e time period(s). 

4) Plant emission limit(s) for single time period(s). 

The above types of emission constraints are prioritized in the above order 

with respect to their significance to the total system operation. Special 

circumstances, however, may exist, in which the above ordering needs to be 

modified (e.g., geographically localized heavy pollution). This formulation was 

made at the plant level. However, it could be easily expanded to the vmit level. 
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4.3.2 Problem Formulation 

The objective function to be minimized is the total operating costs, the 

same quantity as in the economic dispatch problem, hi addition to the imposed 

emission constraints, the usual dispatch constraints must be satisfied, i.e., each 

unit must be operated between its limits and the total generation in each hour 

must exactly match the generation requirements defined in Equation 3.6. The 

emission-constrained dispatch problem is mathematically formulated as follows: 
G H 

minimize ®q.4.5) 
t*l j=l 

where Equation 4.5 represents the system total operating costs, 

subject to 

(Eq.4.6) 

where Equation 4.6 represents the power output limits of the individual generating 

units 

|;Py = P? (Eq.4.7) 
i=l 

where Equation 4.7 represents the fact that the total generation in each hour should 

exactly equal the power requirements during that hour 

i iEuSHft  (Eq.4.8)  
i=l f=l 

where Equation 4.8 represents the emission limit for the power system for the entire 

simulation horizon (type 1 of emission constraints) 

(Eq.4.9) 

where Equation 4.9 represents the emission limit for plant p for the entire 

simulation horizon (type 2 of emission constraints) 
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XEuSEjg (Eq.4.10) 
t=l 

where Equation 4.10 r^resents the emission limit for the power system for hour j 

(type 3 of emission constraints) 

Ep, < (Eq. 4.11) 

where Equation 4.11 represents the emission limit for plant p for hour j (type 4 of 

emission constraints). 

4.3.3 Objective Function Alternative Formulation 

An alternative formulation of the problem objective function has been 

presented in some relevant literature [54,60], based on tiie mathematical models 

developed in goal programming [80]. Hie problem is modeled as a decision 

making process where a "compromise factor  ̂must be found between emission, E, 

and generation costs, C. Such a compromise factor may be modeled by a 

weighting factor a and the objective function is given by 

minimize (l-a)C+aE (Eq. 4.12) 

At the implementation stage, four types of weighting Actors, a ,̂ a ,̂ a®, and 

can be defined and associated with the four different tjrpes of emission 

constraints. The objective function is then given by 

G H 

minimize 
i=l f=l 

(Eq.4.13) 
t>i i>i 

The values of all weighting factors and the values of Zi and Z2 are between 0 and 

1. is a sin^e niunber, while a? and a' are vectors. The dimension of equals 

the number of power plants in the system, whereas that of equals the number 
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of time periods in the simtdation horizon, is a two-dimensional array whose 

dimensions are number of plants times number of time periods. 

4.4 Solution Algorithm 

The solution approach used consists of three phases and is shown in 

Figtire 4.1. In the first phase, the solvability of a given problem is examined. The 

second phase calculates an initial set of Lagrangian mtdtipliers (or weighting 

factors) that satisfy the given emission constraints. The third phase, if necessary, 

is an iterative readjustment of the weighting factors until all emission 

constrEunts are exactly matched and the dispatching constraints are satisfied. 

Phase I — Feasibility check Although a usefiil tool, emission-

constrained dispatching can achieve emission reductions up to the levels defined 

by minimum emission dispatching for each period and summing as appropriate. 

The feasibility check consists of running a TniniTmiTn emission dispatch to 

determine whether the given emission limits are at all achievable by means of 

emission-constrained dispatching alone. If the required limits are below the 

levels attainable by minimum emission dispatching, the problem is deemed 

imsolvable and additional compliance meas\ires need to be taken. The feasibility 

check is completed by running an economic dispatch to check whether the limits 

of a given problem fall below the economic dispatch emission levels. Clearly, if an 

economic dispatch satisfies the emission constraints, it is the optimal dispatch 

schedule and the problem is solved. 

Li the presence of multiple constraints of different types of pollutants, 

there is a "grBy" area in the proximity of the lowest achievable emission levels. 

Any value within this area can be achieved if a single emission constraint is 

applied. If multiple constraints are simultaneously binding, some values may not 
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Read Input Data 

Initial Screening of Limits 

 ̂ Solve Type 1 of Emission Constraints 

Solve Type 2 of Emission Constraints 

Type 1 
still Satisfied ? 

no 

yes 

Solve Type 3 of Emission Constraints 

TVpes 1 & 2 
still Satisfied ? 

Which 
Type ? 

no 

1 

yea 

Solve Type 4 of Emission Constraints 

.,̂ ^Types^>s  ̂
1 & 2 & 3  

still Satisfied 
Which 
Type ? 

yes 

Output Results 

Figure 4.1 Emission-Constrained Dispatch Solution Flowchart for Single 
Pollutant 
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be finally attainable despite being so determined during the initial feasibility 

check. This is because attempting to satisfy miiltiple constraints often moves the 

optimal operating point towards different directions. This is especially txue in 

the case of simultaneously constraining multiple pollutants, e.g., NOx and SO2. 

Phase n— Calculating an initial set of the Lagraneian multipliers fii 

order to simultaneously satisfy all applicable environmental constraints, a 

partitioning and coordination strategy was developed. The terms partitioning 

and decoupling are used interchangeably in the remainder of this chapter. The 

decoupling proceeds on two levels. At the first level, the problem is decoupled 

based on the different types of pollutants, so that at any time only the weighting 

factors of a single type of pollutant are being adjusted. At the second level, the 

already decoupled problem, is partitioned once again according to the four 

different types of emission constraints. The emission constraints are then 

satisfied in a sequential order that may be altered if special circumstances exist. 

The multipHer associated with the first type of emission constraints is found at 

first, using a single hne search algorithm, such as bisection or secant search. 

Once this multiplier is found, the search continues with the miiltipliers 

associated with the second ts^pe of emission constraints. These are found again 

by means of single line searches. Ih the event of multiple constraints of the 

second type, this part of the search is an iterative process, since optimizing the 

output of a given plant to emit iq> to a specified target value, may affect the 

operation of other plants that may have already been treated. Using the updated 

multipliers, the process iterates until all constraints of the second type are 

satisfied. At this point, it is important to check whether meeting emission 

constraints of the second type has renewed or created a violation of the previous 

type, in which case it must be corrected. The next step is to satisfy the 

constraints of the third type. At the completion of this step, the search process 
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once again, checks to determine that constraints of previous types continue to be 

satisfied. Finally, the multipliers associated with the fourth type of emission 

constraints are calculated. As in the case of the constraints of the second type, 

this step may require several iterations if multiple constraints of this type are to 

be simultaneously met. The final step is to ensure that at this point all 

previously satisfied constraints continue to be within their respective target 

values, iff any violations are detected, the search cycles to the appropriate level 

and the process iterates. 

At the completion of the above search process, if a sini^e pollutant is to be 

constrained, an optimal dispatch schedule has been found that satisfies all 

emission constraints. It is important to note at this point that, in general, 

oversatisfying emission constraints unnecessarily increases the total operating 

costs. So, it is preferable from an economic viewpoint to treat the mathematical 

inequalities describing the environmental constraints as equalities, and 

calculate multipliers to match emission outputs to the target values. However, 

there are exceptions to this strategy. For instance, satisfying exactly a broad (e.g., 

systemwide) constraint may cause overcomplying of a more narrow (e.g., plant-

level) constraint that can not be improved without causing a violation of the 

broad constraint. 

additional types of pollutants are to be optimized, the above search 

process is repeated for the next type of pollutant and the appropriate set of 

multipliers is calctdated, while holding constant, the previously adjusted 

midtipliers for aU other pollutants. Figure 4.2 presents the solution flowchart for 

that case. 

Phase HI— Refinement of the multipliers As already indicated, if a 

single pollutant is to be complied with, completion of phase II provides the 

optimal dispatch schedtde. The refinement phase is performed every time the 
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Figure 4.2 Emission-Constrained Dispatch Solution Flowchart for Multiple 
Pollutants 
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search process back-checks to ensure that constraints of previotis types are still 

satisfied. However, in the event of multiple pollutants, completion of phase I 

provides a dispatch schedule that generally satisfies only the constraints of the 

last type of pollutant considered. It is important to recognize that simultaneous 

optimization of emissions of various pollutants adds another degree of 

complexity. This is because although all emissions are correlated to the fuel 

resources, oftentimes, decreasing emissions of one pollutant may cause an 

increase in the emissions of another pollutant. In such a case, once phase II is 

completed, phase m comes into play. Phase III consists of checking to see whether 

all emission constraints are met. If violations are detected, the search process 

repeats the second phase treating the violated constraints. The entire procedure 

iterates until all constraints are simultaneously satisfied, at which point the 

optimal dispatch schedule is produced. 

Partitioning and coordination As already mentioned, the problem 

is partitioned twice: according to the type of pollutant and according to the four 

types of emission constraints. At any point during the solution process, a single 

type of emission constraint, of a single type of pollutant, is treated. Coordination 

is achieved through the use of the updated values of the multipliers. At all levels 

of the search process, all multipliers previously calculated are used to provide the 

current dispatch schedule. Calculation and refinement of the multipliers at the 

level of type of emission constraint is performed during phase IE of the solution 

process. Refinement of the multipliers at the level of type of pollutant is 

performed at the third phase of the search. Refined versions of the search process 

may be developed by considering particular attributes of the detected violations, 

e.g., their relative magnitude, hi all instances however, the basic structure 

presented in this section remains the same. 

f 
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4.4.1 Similarities of the Proposed Algorithm with Other Approaches 
presented in the Literature 

The proposed algorithm foUows the partitioning and coordination 

princ^le, a common characteristic of all methods based on the successive 

relaxation of the Lagrangian multipliers. Reference [81] presents an extensive 

and thorough treatment of Lagrangian multipHers-based optimization schemes. 

References [38,82] discuss the application of Lagrangian relaxation on the unit 

commitment problem. A formal treatment of the Lagrangian relaxation method 

applied on the emission-conslxained dispatch problem is presented in [83]. 

In reference [71], the complexities involved in the simultaneous 

optimization of NOx and SO2 emissions are pointed out. Sin^e line searches are 

tised to update the emission dispatch prices. The overall objectives of that 

approach present similarities to the objectives of the approach presented in this 

section, i.e., development of a solution scheme that can carefolly coordinate 

emission reduction of various types of pollutants and can demonstrate fast 

execution times for possible on-line implementation, hi the approach presented 

in this dissertation, an additional level of complexity exists by considering 

multiple types of emission constraints. At the implementation level, weighting 

factors were used that can take values between 0 and 1 instead of emission 

dispatch prices. Using such factors provides the additional benefit of readily 

knowing upper and lower bounds of the decision parameters during the single 

line searches. Moreover, whetiier a constraint is overshot or is not attainable can 

be easily determined by inspecting the values of the corresponding fector. The 

weighting factors of the final dispatch schedule can be scaled to provide optimal 

emission dispatch prices. Such prices, in the case of SO2, provide indications on 

whether emission allowance trading may be profitable and should be pursued. 
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4.4.2 Implementation Considerations 

The use of weighting factors that can take values between 0 and 1 provides 

a convenient way to determine whether a particular constraint is satisfiable or 

not. Weighting factors tsiking values in the neighborhood of 0 clearly put more 

wei^t on economic dispatch whereas values dose to 1 signify heavy reliance on 

minimum emission dispatch. If a particular Victor takes a value of 1 and the 

emission target is not yet achieved, it is likely that the constraint is 

unattainable. Conversely, a value of 0 means that the corresponding constraint is 

not binding. Althotigh most of these extreme cases will be detected during the 

initial phase of the solution procedure, when several weighting factors have non

zero values and the corresponding constraints are active, the solution space is 

reduced and values initially deemed attainable may no longer be so. 

It may be desirable to offer flexibility to the end user by providing the 

capability of an additional weighting factor that may control a block of units for a 

block of time periods. Additionally, there may exist cases where the order in 

which the different searches are executed should be altered. The necessary 

scaling of the weighting factors to provide emission dispatch prices should be 

carefully developed. These considerations should be taken into account during the 

development of the algorithm implementing the proposed solution approach. 

4.5 Numerical Results 

The algorilJim presented in the previous sections was applied to the same 

50 generating unit test system used to run the fiiel-constrained dispatch test 

cases. The system data and the load profile are shown in the Appendix. The 

software programs were developed in FORTRAN and the test cases were 

executed on a HP Pentium at 166 MHz. 
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Ten different test cases were run and the results are summarized in the 

remainder of this section. The imposed emission limits for each case are shown 

in Table 4.1. Cases 1-4 impose an increasing nimiber of NOx constraints 

whereas cases 5-8 impose an increasing number of SO2 limits. Case 9 

simultaneously satisfies systemwide NOx and SO2 constraints. The last case 

applies simultaneously all possible types of constraints. 

Figure 4.3 shows the increase in cost when a systemwide NOx constraint is 

applied. Hgure 4.4 presents a similar case for SO2. Table 4.2 presents a 

summary of the numerical output results firom cases 1—10. The first three rows of 

Table 4.2 present system results firom the economic and minimum emission 

dispatch base cases, for comparison reasons. Because of their economic 

interpretation as emission shadow prices, the final values of the weighting 

factors — or Lagrangian multipliers — associated with the first type of emission 

constraints — systemwide, entire simidation horizon — are presented in Table 4.3. 

These values may provide insight on whether it would be profitable for power 

producers to get involved in emission allowance trading. Although to date, 

emission allowances have been introduced just for SO2, the multipliers 

associated with the NOx constraints are also included for consistency. Table 4.4 

contains the complete results from execution of test case 10. In those instances in 

Table 4.2, where there is no difference in the output values before and afber 

enforcing a constraint, the particular constraint has already been satisfied by 

enforcement of a broader constraint. All applied limits were achieved within 

required tolerance in very reasonable times. Execution of the most complete of 

the test cases, i.e., case 10, requires approximately 80 seconds. It should be 

emphasized however, that execution times depend not only on the number of 

constraints but also on how restrictive they are. 
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Table 4.1 Description of Emission-Constrained Test Cases 

Total Time NOx Hour 150 NOx Total Time SO2 Hour 150 SO2 

Case System Plant 11 System Plant 11 System Plant 11 System Plant 11 

1 1480 

2 1480 230 

3 1480 230 3.15 

4 1480 230 3.15 1.1 

5 2650 

6 2650 485 

7 2650 485 8.35 

8 2650 485 8.35 2.4 

9 1480 2650 

10 1480 230 3.15 1.1 2650 485 8.35 2.4 

4.6 Chapter Summary 

The development and testing of an emission-constrained dispatch model 

was presented in this chapter. Four distinct classes of emission constraints were 

defined: i) systemwide, for entire simulation time, ii) plant-level, for entire 

simulation time, iii) systemwide, for sin^e hour, and iv) plant-level, for single 

hour. The dispatch process may account for the worth of emission allowances. A 

Lagrangian multipliers variant is used to solve the problem, using single line 

searches to update the mtdtipliers. A number of test cases were run and a 

summary of the numerical output was presented. The test cases demonstrate the 

characteristics and the capabilities of the emission-constrained dispatch 

algorithm. 
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Table 4.2 Summary of Output Results from Emission-Constrained Test Cases 

Case Power Fuel Cost SO2 NOx 

economic  ̂ 720,119.56 6,773,877.5 8,898,077.0 2,788.650 1,548.375 

min NOx  ̂ 720,119.20 7,038,215.0 9,225,414.0 2,709.353 1,329.177 

minSOa  ̂ 720,119.20 7,068,135.0 9,263,622.0 2,474.466 1,557.807 

1 720,119.25 6,779,049.0 8,905,774.0 2,762.504 1,479.996 

2 720,119.44 6,800,404.5 8,926,799.0 2,732.776 1,479.996 

3 720,119.44 6,800,399.5 8,926,796.0 2,732.772 1,480.008 

4 720,119.44 6,800,399.5 8,926,796.0 2,732.772 1,480.008 

5 720,119.31 6,817,340.5 8,945,347.0 2,649.999 1,482.356 

6 720,119.44 6,826,068.5 8,953,012.0 2,649.998 1,489.192 

7 720,119.44 6,826,068.5 8,953,012.0 2,649.998 1,489.192 

8 720,119.44 6,826,068.5 8,953,012.0 2,649.998 1,489.192 

9 720,119.50 6,817,262.5 8,945,370.0 2,649.992 1,479.980 

10 720,119.31 6,836,075.0 8,965,138.0 2,650.064 1,479.999 

1 base case results for comparison, reasons only 
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Table 4.3 Final Values of Weighting Factors from Emission-
Constrained Test Cases 

Case for NOx for SO2 

1 0.995798 

2 0.994947 

3 0.994944 

4 0.994944 

5 0.998536 

6 0.998040 

7 0.998040 

8 0.998040 

9 0.0197754 0.998498 

10 0.161133 0.997053 
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Table 4.4 Output Results firom Test Case 10 

Power Fuel Cost SO2 NOx 

Unit Results 

1 3126.04 38978.27 50437.86 17.899 18.186 

2 3527.26 43189.50 55887.14 21.891 18.766 

3 3257.49 40763.60 52748.23 9.254 18.980 

4 7040.49 78381.95 97820.72 27.732 31.462 

5 4644.63 52142.00 65073.43 17.841 30.047 

6 23136.94 208188.94 259819.89 81.284 47.027 

7 12337.68 124827.38 155784.50 43.797 31.622 

8 3364.42 39667.48 51845.47 20.497 15.918 

9 21355.67 197999.20 258784.95 46.873 24.366 

10 17684.95 165195.56 215910.58 61.488 18.399 

11 24817.21 232685.88 307378.31 60.638 32.215 

12 25197.35 237175.08 313308.34 60.388 32.604 

13 29209.61 267080.00 352812.69 70.323 29.305 

14 29121.94 268628.09 354857.72 69.335 29.162 

15 44596.91 384538.38 507975.38 186.174 80.693 

16 42626.16 365410.84 482707.75 178.217 73.723 

17 3109.54 37238.61 49676.26 10.786 15.454 

18 6296.72 63836.62 85158.06 20.728 32.116 

19 6535.03 66865.52 89198.59 25.076 24.911 

20 6988.13 69319.47 92472.13 24.851 25.625 

21 2225.66 26847.80 34311.46 7.036 6.772 

22 6227.89 69056.06 88253.65 24.135 29.390 

23 7891.96 84168.20 107566.93 30.167 31.000 
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4.4 (continued) 

Power Fuel Cost SO2 NOx 

14537.35 143952.48 183971.38 52.936 59.408 

7879.73 92959.90 118802.77 32.398 23.639 

55896.66 485473.44 620435.13 198.175 111.522 

4287.57 44808.39 57130.71 15.666 15.050 

12002.39 126898.67 161796.22 48.395 23.468 

18867.84 187515.94 239082.73 50.373 15.863 

19163.23 192199.08 245053.75 47.455 16.102 

13206.19 140958.17 190857.63 34.584 8.242 

12223.28 134085.09 181551.30 31.675 7.621 

26487.63 239067.27 323697.66 140.955 49.247 

29669.14 268388.59 363397.91 157.439 55.012 

3853.74 41779.16 54103.98 8.233 7.545 

3816.33 42035.01 54435.33 8.011 7.870 

960.00 14628.55 18943.98 4.190 5.479 

2166.54 25363.20 32845.31 6.519 7.181 

2770.28 32558.21 40209.39 7.318 13.948 

2815.00 33135.36 40922.14 7.693 15.094 

4101.99 47018.16 58067.44 12.828 7.944 

3619.73 42216.81 52137.74 11.286 7.273 

12600.00 140756.78 188051.50 52.049 25.390 

14322.41 131515.08 175703.75 44.274 35.721 

23399.43 200971.50 268497.94 132.300 51.406 

40591.89 324233.47 433176.34 209.189 84.317 

12157.05 116911.06 158180.61 43.341 47.889 

12751.47 121604.98 164531.61 49.220 48.041 
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Table 4.4 (continued) 

Power Fuel Cost SO2 NOx 

49 16265.37 149782.86 202656.23 65.811 16.312 

50 15387.38 153073.59 207108.06 61.343 15.670 

Power Plant Results 

1 9910.79 122931.36 159073.22 49.044 55.932 

2 47159.74 463540.25 578498.50 170.653 140.158 

3 42405.05 402862.25 526541.00 128.859 58.684 

4 195569.19 1755518.25 2319040.00 625.076 277.702 

5 22929.43 237260.22 316505.03 81.441 98.106 

6 94659.27 902457.88 1153341.25 344.847 261.732 

7 54321.03 551422.06 703063.44 161.890 70.482 

8 81586.25 782499.13 1059504.50 364.654 120.123 

9 10796.61 123805.91 160328.59 26.952 28.075 

10 13306.99 154928.55 191336.70 39.125 44.260 

11 90913.73 797476.88 1065429.50 437.811 196.834 

12 56561.27 541372.50 732476.50 219.714 127.912 

System Results 

720119.31 6836075.00 8965138.00 2650.064 1479.999 
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5. FUEL-AND EMISSION-CONSTRAINED DISPATCH 

The main purpose of this short chapter is to discuss the overall scheme 

that combines the two solution approaches presented in the two previous 

chapters. The first section of this chapter provides a literature review. The second 

one briefly discusses the overall solution approach and the coordination of the 

different modules, and the third section presents numerical results. A chapter 

summary section completes the chapter. 

5.1 Literature Review 

Only a few publications have addressed the combined fiiel- and emission-

constrained dispatch problem treating both subproblems equally. In most 

instances, one of the two components was addressed in varjnng form, firom simple 

to complex, while the other component was modeled in a simple way. 

Vickers et al. [84] used linear fimctions to model fuel and environmental 

constraints. The main focus of their approach was on the potential cost tradeoffs 

between emission allowances and sulfiir content. The paper also discussed the 

changes that occurred in a rural electric cooperative's dispatching activities. The 

paper by Lee et al. [85] addressed a similar idea of optimally coordinating the 

consiunption of take-or-pay fuel contracts with the emission allowance trading. 

The resulting problem was solved by a decomposition and coordination approach 

following the principles of Lagrangian relaxation. In another paper by the same 

principal authors [86], an adaptive simulation structure was presented for 
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operational planning use under annual environmental and fuel constraints. The 

advantage of the algorithm they proposed was that it captured the chronological 

patterns of the power generation. Production simulation was performed 

sequentially for one week at a time and its results were used to define the target 

values for the remaining time periods. The tmcertainty in unit availability was 

modeled by a conditional Monte Carlo-based sampling procedure. Finally, 

reference [87] summarized the discussions of an expert panel on ef&ciently 

coordinating resource allocations. Alternative coordination schemes were 

presented by different panel members, each with its own merits. Additional 

considerations besides fiiel and emissions were also addressed, such as 

allowance markets, hydro scheduling, optimal generation mix, etc. The overall 

conclusion was that the required coordination could be achieved by manipulating 

either resource target values or resource dispatch prices. 

5.2 Solving the Overall Problem. 

5.2.1 Combined Algorithm 

This section indicates how the two dispatching strategies were combined 

into a single methodology. The combined fuel- and emission-constrained dispatch 

problem can be solved through a modtilar approach that combines the solution 

methods to the individual components. The two principal subproblems are solved 

iteratively and optimal dispatch schedules are commimicated between them. The 

main building block is the generation dispatch process, common to both 

subproblems. The overall process iterates until i) all of the constraints are 

satisfied and an optimal solution is reached, or ii) some constraints are deemed 

unattainable through modified dispatching techniques and the process halts. 

Each individual subproblem is solved following the respective algorithms 
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presented in the previous two chapters. Once an initial screening of the imposed 

constraints is performed, the combined problem presents an additional level of 

coordination and complexily. A schematic diagram of the coordination of the 

modules is shown in Figure 5.1. 

5.2.2 Implementation Considerations 

One of the advantages of the proposed, approach is its simplicily and fast 

execution time compared to the limited, number of ot^er approaches reported, in 

the literature, thtis making it applicable for on-line implementation. 

Performance speed, and execution times depend, on a number of parameters, 

including system size, number of constraints imposed, tolerances used, etc. Since 

reasonable computational time limits are necessary, there are usually ways to 

improve the execution times, but they are generally case and/or system 

dependent. The most useful strategy is to explore potential correlations among 

the imposed constraints. In the fuel-constrained, dispatch case, solving the over-

the-limit consimiption violations usually of&ets some of the take-or-pay 

violations. On the emission side, satisfying systemwide constraints oftentimes 

simultaneously meets or exceeds target values for constraints applicable over 

smaller subsets of units. 

Cycling may occur at any level of tiie optimization process. In most cases, 

the value of some wei^ting factor (ycles between a mflTimum and a Tnim'miim 

values. If such a case is detected, the parameter responsible for it needs to be 

adjusted to appropriate levels for a niunber of iterations, usually at the midpoint 

of the cycling range. Nonetheless, all sin^e dimensional searches should be well 

structured to avoid endless looping. 

Linear programming techniques could have been used to solve the 

combined problem, provided that linear approximations wovdd have been used to 



www.manaraa.com

95 

updated weight apdated weights 

updated 
fuel-related 

weights 

updated 
emissioii-related 

weights 
generation 

outputs 
generation 

outputs 

constraints 
satisfied 

Input: Data 

Output Results 

Solution Control 

Initial Screening 

of Limits 

Fuel-Constrained 

Dispatch 

Emission-Cons traiined 

Constrained Economic 

Dispatch 
Constrained Economic 

Dispatch 

Figure 5.1 Fuel- and Emission-Constrained Dispatch 

transform the actual data — available in reduced cubic form — into suitable 

piecewise linear models. It is possible that computational speed might improve 

and high accuracy could be achieved by using a su£S.cient number of linear 

segments to represent the cubic curves. However, linear programming methods 

were not tested; thus, there is no basis for comparison. 
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5.3 Numerical Results 

The combined algorithm was applied to the same 50-unit test system used 

to run the fuel-constrained and tiie emission-constrained test cases. The test 

case presented in this section simultaneously satisfies the combination of case 4 

of the fiiel-constrained dispatch and case 10 of the emission-constrained 

dispatch. Moreover, each fiiel groiq) observes its optimal fiiel consiunption 

ordering. The numerical output shows results for individual units, power plants, 

fuel groups, and the entire system and is presented in Table 5.1. As the results 

indicate, some of the applied constraints are not binding. Elnfordng the 

systemwide NOx and SOa constraints simtdtaneously satisfies the take-or-pay 

requirements for fuel groiq) 10 and there are no over-the-hmit violations for any 

of the fiiel groups. Cost calciilations for individual units were performed during 

the post solution production costing process. The execution time was 

approximately 90 seconds on a HP Pentium at 166 MHz. 

5.4 Chapter Summary 

The combined fiiel- and emission-constrained dispatch algorithm was 

presented in this chapter. The two dispatching subproblems are solved 

iteratively and optimal values for the various multipliers are communicated 

between them. The final outcome of the combined algorithm is an optimal unit 

dispatch schedule that observes the optimal contract consumption sequence for 

each fuel groiq), and concurrently satisfies take-or-pay fuel requirements, over-

the-Umit fiiel constraints, and the imposed enviromnental constraints. 
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Table 5.1 Output Results from the Combined Dispatch Test Case 

Power Fuel Cost SO2 NOx 

Unit Results 

1 3192.29 39656.58 51315.58 18.035 18.293 

2 3536.64 43280.94 56005.47 21.911 18.777 

3 3327.65 41473.40 53666.71 9.401 19.104 

4 6145.17 70121.48 87511.67 24.630 30.782 

5 4536.87 51048.80 63709.11 17.466 29.963 

6 19807.30 179164.86 223597.66 69.765 42.462 

7 9150.89 94559.14 118009.71 33.323 27.254 

8 3468.50 40700.13 53195.15 20.688 16.132 

9 21147.67 196119.91 256328.77 46.430 24.009 

10 16737.00 156687.67 204790.81 58.732 17.020 

11 28061.22 262125.03 345880.66 68.244 37.464 

12 28126.66 263518.16 347718.93 67.220 36.999 

13 30590.39 279581.59 359541.91 73.760 31.833 

14 30515.11 281219.47 371076.26 72.781 31.692 

15 41540.06 359263.03 474056.72 173.903 73.588 

16 39892.30 342693.78 452193.17 167.054 67.276 

17 3380.52 39867.11 54324.36 11.472 15.920 

18 6556.50 66099.77 90069.92 21.505 33.390 

19 6988.18 70960.40 96693.19 26.259 25.226 

20 7364.64 72676.31 99031.35 25.868 25.930 

21 2280.90 27401.40 37544.93 7.191 6.879 

22 6720.46 73882.05 101231.93 25.078 29.826 

23 8195.18 86972.85 119168.73 30.787 31.267 
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Table 5.1 (continued) 

Power Fuel Cost SO2 NOx 

24 13901.31 138725.28 190079.03 49.634 53.582 

25 8432.64 98500.49 134963.70 33.473 25.498 

26 55525.82 482241.75 660759.49 196.955 110.231 

27 3014.91 33379.96 41171.14 10.905 12.080 

28 12000.00 126874.50 156488.12 48.386 23.464 

29 13159.88 134482.53 165871.93 36.970 7.631 

30 13796.01 143649.48 177178.53 34.422 8.695 

31 15725.62 164236.83 227008.84 40.978 11.694 

32 14865.30 159048.83 219837.97 38.202 11.413 

33 32631.61 291356.09 365574.76 170.003 59.794 

34 37059.10 330530.00 414727.64 193.045 69.557 

35 3874.71 41960.18 56007.58 8.331 7.660 

36 3853.09 42356.02 56535.94 8.174 8.082 

37 960.00 14628.55 19525.89 4.190 5.479 

38 2324.77 26995.44 36032.96 6.932 7.471 

39 2780.87 32661.41 43595.78 7.349 13.956 

40 2879.00 33768.60 45073.63 7.862 15.153 

41 3975.21 45796.63 61128.40 12.394 7.811 

42 3594.05 41962.49 56010.67 11.203 7.250 

43 12600.00 140756.78 181956.79 52.049 25.390 

44 18891.66 169183.52 218704.13 56.254 42.943 

45 24036.16 206091.13 266414.73 135.242 52.819 

46 37641.92 303062.97 391770.57 194.551 78.649 

47 11415.60 110474.98 149472.48 41.060 47.078 

48 11381.03 110152.89 149036.95 44.074 46.528 
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Table 5.1 (continued) 

Power Fuel Cost SO2 NOx 

49 14781.91 137077.16 185465.59 60.572 15.406 

50 13755.01 138295.42 187113.31 55.283 13.551 

Power Plant Results 

1 10056.58 124410.92 160987.77 49.346 56.174 

2 39640.23 394894.25 492828.16 145.184 130.461 

3 41353.17 393507.69 514314.72 125.849 57.161 

4 198725.75 1788401.00 2359840.69 622.962 278.851 

5 24289.85 249603.59 340118.83 85.105 100.466 

6 95056.32 907723.88 1243747.90 343.117 257.283 

7 41970.80 438386.50 540709.75 130.684 51.870 

8 100281.64 945171.75 1227149.30 442.227 152.458 

9 11012.58 125940.19 168102.36 27.626 28.692 

10 13229.13 154189.13 205808.47 38.807 44.171 

11 93169.74 819094.38 1058846.20 438.097 199.801 

12 51333.54 496000.44 671088.38 200.990 122.563 

Fuel Group Results 

1 10056.58 124410.92 160987.77 49.346 56.174 

2 39640.23 394894.25 492828.16 145.184 130.461 

3 41353.17 393507.69 514314.72 125.849 57.161 

4 198725.75 1788401.00 2359840.69 622.962 278.851 

5 24289.85 249603.59 340118.83 85.105 100.466 

6 95056.32 907723.88 1243747.90 343.117 257.283 

7 41970.80 438386.50 540709.75 130.684 51.870 

8 30590.92 323285.66 446846.81 79.180 23.107 
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Table 5.1 (continued) 

Power Fuel Cost SO2 NOx 

9 69690.72 621886.13 780302.45 363.048 129.351 

10 24241.71 280129.31 373910.83 66.434 72.863 

11 93169.74 819094.38 1058846.20 438.097 199.801 

12 51333.54 496000.44 671088.38 200.990 122.563 

System. Results 

720119.31 6837323.50 8983542.53 2649.996 1479.950 
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6. TRANSMISSION COST ALLOCATION USING COOPERATIVE 
GAME THEORY 

This chapter addresses the problem of allocating transmission costs in a 

fair manner among the users of the transmission grid. A cooperative game 

theoretic framework was developed and evaluated. The first section of the 

chapter provides a general introduction to game theory and the second section 

presents a literattire review. Section 6.3 discusses cooperative games and 

proposed solution concepts. Subsequently, section 6.4 sets up a transmission cost 

allocation scheme. Numerical results are presented in section 6.5 and the final 

section provides a chapter summary. Parts of this work have been developed 

during the author's summer internship with Pacific Gas & Electric, in San 

Francisco, California. Guidance and contributions from H. Singh and A. 

Papalexopoulos are hereby thankfully acknowledged. 

6.1 Introduction 

Passage of FERC Orders 888 and 889 was the latest in a series of 

legislative actions that effectively opened the transmission sector to competition. 

The new operational environment presents some fimctional and technical 

difficulties that need to be resolved [5,88]. Because of the anticipated large 

number of transmission transactions accommodated in every time period, a 

critical problem is the development of mechanisms that not only price 

transmission grid usage in an efficient way, but allocate to every participant his 

fair cost share as weU. Although many pricing mechanisms have been proposed 
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to date, none have been universally accepted. The work presented in this chapter 

assumes that a costing scheme is already in place and examines ways to allocate 

transmission costs to the users of the system. Game theoretic cost allocations 

depend on the a priori assumed costing fimctions. 

Game theory, first established in the late 1920's by von Neumann and 

Morgenstem (although their fiamous book 'Theory of Games and Economic 

Behavior" was published just in 1944), is an important branch of operations 

research. It deals with the logic of decision making in sitiiations where the 

outcome depends upon the decision(s) of some agents. In a topical problem, two or 

more psirticipants, called players, choose strategies and make decisions in a 

conflicting or competitive environment, each player aiming to reach a final 

outcome as advantageous as possible to his side. Each participant has only 

partial control over the final outcome. There are several social situations that are 

never referred to as games in everyday speech, but are indeed games in a game 

theory context. Political, military, and other clashes are also considered as 

games. 

Games may be classified based on a niunber of their attributes, e.g. 

nimiber of players, whether the game is repeated in time or not, etc. According to 

one such classification, games are divided into cooperative and non-cooperative 

types. As it is implied by the name, cooperation between the players of a non-

cooperative game is forbidden. However, the interests of the players in such a 

game need not be conflicting. Althou^ a very interesting branch of game theory, 

non-cooperative games are not considered in the remainder of this chapter. 

On the other hand, cooperation is allowed among the players of a 

cooperative game. Pre-game agreements often come into play and the players are 

firee to form coalitions of any size. The members of a coalition agree that they will 

somehow correlate their strategies. Each coalition tries to reach a final payoff 
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that is as advantageous as possible. This payoff becomes a function of the 

coalition. Therefore, the selection of optimal individual strategies is no longer the 

main issue in cooperative games. Instead, the formation of coalitions is what 

matters the most. 

Cooperative game theoretic models are a strong candidate in providing the 

necessary framework for developing an efSdent cost allocation mechanism. Such 

models have been used extensively to solve problems of cost allocation and 

division of common property, and provide a flexible framework to parametrically 

analyze the problem under consideration. 

Game theory is a still-developing field and its contributions and models 

have been recognized and used in many scientific fields, such as economics, public 

poli<^, industrial organization, etc. The 1994 Nobel Memorial Prize in Economics 

was awarded to three prominent game theorists, J. Harsanjd, J. Nash, and R. 

Selten, for their contributions to the field. However, t^e applicability of game 

theory to power systems problems, and to transmission analysis more 

specifically, has been viewed with skepticism by some experts. This occurs 

because it is not clear whether the complexities of the interconnected power 

system can be accurately captured and modeled by game theory. Moreover, 

cooperative games also received criticism, because some researchers question 

whether the players' behavior can obey or be subject to axiomatically proposed 

concepts. Nonetheless, cooperative games have been used to model several social 

situations and produced informative results. The framework proposed herein 

specifically examines the negotiating power of the game participants, as 

measured by the different solution concepts. Carefiil study of game theory results 

should provide significant insight to the transmission network users and should 

be helpful in their efforts to successfully compete during the transitional period 

to a competitive transmission market. 

i 
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6.2 Literature Review 

Transmission, pricing is a subject that received considerable attention and 

many researchers proposed different pricing mechanisms [89,90,91,92]. 

References [93,94] review some of the most commonly adopted pricing schemes. 

However, there is no single transmission pricing approach that is accepted by all 

interested parties. Reference [95] provides an excellent comprehensive 

bibliography list on transmission access issues with particular attention to 

transmission economics and pricing. 

Game theoretic models were applied to power system problems long before 

the introduction of competition in the power industry. Breton et aL [96] discussed 

a game theoretic scheme to e£Bciently manage an interconnected power system. 

The optimal dispatch of two hydrothermal systems was modeled as a stochastic 

control problem and was solved using cooperative game theoiy concepts. 

Bargaining solutions were analyzed to determine the optimal prices for energy 

transactions between the two systems. The goal of the paper by Hobbs et al. [97] 

was to show how game theory might be a helpful tool in identifying and designing 

transmission pricing policies. However, the operational environment for their 

models was price regulated. Three groups of pricing policies were examined: i) 

status quo, ii) planning approach, and iii) contract approach. The basic difference 

among the three groups was the degree of regulation involved. Cooperative game 

models were used to analyze short-term, nonfirm power transactions. 

More recently, analysis of transmission transactions, in a deregulated 

environment this time, was discussed in the papers by Ferrero et al. [98] and Bai 

et al. [99]. The former modeled the transactions within a regional power pool as a 

cooperative game. The possible player coalitions as well as their strategies were 

developed and analyzed. The players' behavior in a perfect competitive 
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enviTonment versus their behavior in an imperfect competitive environment was 

examined. The paper concluded that participants would be able to increase their 

benefits by coordinating bid strategies and sharii^ savings. The latter paper 

used cooperative game theory as well, and modeled the transmission users as the 

players of a Nash bargaining game. In such a game, acceptable solutions satisfy 

the axiomatically gh^n Nash conditions of individual rationality, feasibility, 

Pareto optimality, independence of irrelevant alternatives, independence of 

linear transformations, and symmetry [100]. The conclusions reached were 

similar to those of the previous reference. Niunerical results supported the 

hypothesis of increased profits if players scheduled transmission transactions in 

a cooperative way. Tsukamoto et aL [101] used cooperative game solution 

concepts to allocate transmission fixed costs among the transmission network 

users. The solution concepts of the core and the nucleolus were used and results 

were compared and analyzed. Finally, Singh et al. [102] presented the basic 

cooperative game concepts and appUed the nucleolus and the Shapley value 

solutions to the allocation of transmission costs. The core, the nucleolus, and the 

Shapley values are explained in a later section. 

Besides transmission-related problems, game theory has been used to 

model several other power system problems. The optimal operation of non

commercial power plants was addressed in the paper by Maeda et al. [103]. 

Haurie et al. [104] used a Stackelberg equilibrium method to solve the 

cogeneratdon problem. The t^ical Stackelberg problem is characterized by a 

strong agent who acts as the "leader^ whereas the remaining agents act as 

"followers". Kuwahata et al. [105] discussed the cooperation between an electric 

utility and a cogenerator to determine prices for power transactions. 

Game theoretic approaches addressed these power system problems firom 

a different viewpoint than that of the traditional electrical engineer. However, as 
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already indicated, critics argue that game theory is limited to small problems 

and may not be able to address the complexities of the power network in their 

entirety. Nonetheless, despite their limitations, game theoretic models can 

provide interesting insist to many power systems issues. 

6.3 Cooperative Games 

6.3.1 Definitions 

There are many ways to formally describe a cooperative game [106]. The 

most common one is by means of a set of players, n, and a characteristic function, 

9. n is the set of the entities that participate in the game. The nature of the 

players depends on the particular problem; obviously, they need not be Uving 

creatures. As it will be discussed later, transmission transactions would be the 

players in a game theoretic transmission cost allocation model. Any subset of IT 

is a coalition. The coalition of all players (the entire set II) is called the grand 

coalition and consists of k members (7C-players game). Usually, the empty subset 

of n is also considered a feasible coalition, called empty coalition. Players form 

coahtions in anticipation of more advantageous payoff. Li return, they agree to 

correlate their strategies, or in a way, give up their independence as individual 

players of the game, hi order for coahtions to form, it must be somehow assured 

that the coalition payoff will be at least equally or hopefully more advantageous 

than the sum of the payoffs the coahtion members can get if they act 

independently. If that is the case for at least one coaHtion, then the game is 

essmtial. Payoffe may not be directly monetary, but must ultimately result in 

making one or more players better off. 
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The characteristic function, defined over the set of all possible coalitions, 

assigns to each coalition its worth. In other words, it assigns to each coalition the 

most advantageous payofT this coalition is assured of obtaining — provided that 

its members coordinate their strategies in a prescribed way — no matter what the 

remaining players will do. The characteristic fimction provides a way to measure 

the strength of each coalition. By definition, the worth of the empty coalition is 

always equal to zero, Le. ^{}) = 0. Depending on how a game model is set up, a 

coalition's worth is a lower or an iq>per bound of the amount to be allocated to 

this coalition. 

If a cooperative game is essential, then ^ exhibits the property of 

superadditivity 

^niun2)>®(ni)+^(n2) vni,n2 cn, 1X101X2=0 (Eq.e.i) 

The weakest form of superadditivity is additivity. Games with additive 

characteristic functions are called inessential and their solution is trivial. 

By participating in a cooperative game, each player ejects to receive his 

"fair" share of the total payoff available to the entire set of players, ^C^O. Each 

player expects to receive individiially a payofif at least equal to his worth, that is 

Ap > <Kp) p = (Eq. 6.2) 

where Ap is the payoff to player p. Also, it must hold true that 

A(n) = 5;A, = <l>(n) (Eq.6.3) 
p»l 

Equation (6.2) is usually referred to as individual rationality criterion and 

Equation (6.3) as Pareto optimality criterion. A distribution A = (Ai,...,Ap) that 

satisfies the conditions described by Equations (6.2)-(6.3), or in other words, an 

individually rational and Pareto optimal distribution of the total payoff ^0^, is 

called an imputation. The notion of imputation provides an explanation of why it 
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is convenient to consider games with 3 players. The set of imputations of such a 

game is a 3-dimensional plane and can be easily presented geometrically. 

6.3.2 Solution Concepts 

In most games, there is an abundance of points in the solution space that 

satisfy the individual rationality and. Pareto optimaHty constraints, hi other 

words, there is a plethora of imputations. Over the years, researchers have tried 

to develop mechanisms in order to provide a unique, if possible, imputation 

accepted by all parties involved. This led. to a number of solution concepts being 

presented in the literature. 

The von Neumann-Morgenstem (vN-M) solution concept of stable sets 

historically was the first one presented. One additional definition is in order at 

this point. An imputation A1 is said to dominate another imputation A2, if there 

is a subset of players who all prefer A1 over A2. A stable set — or vN-M solution — 

consists of all imputations with the following properties; i) no imputation in the 

set dominates any other imputation in the set, and ii) any imputation outside 

the set is dominated by at least one imputation inside the set. The first condition 

provides for interned stability and the second for external stability. However, 

neither uniqueness, or existence of a stable set are guaranteed. In 1968, a 10-

player game was constructed that did not have a vN-M solution. 

If Equation (6.2) is extended to cover all possible coalitions 

A(r) > 4<r) vr c n (Eq. 6.4) 

where A(r) is the payoff to coahtion T 

A(r) = 2;Ap (Eq.6.5) 
per 

one arrives at the coalitional rationality criterion (or stand-alone test). Clearly, 

the condition described by Equation (6.4) includes the condition of Equation (6.2). 



www.manaraa.com

109 

The set of imputations satisfying Equations (6.4)-<6.5) is called the core of the 

game. The core of the game is one of the most important solution concepts for it 

identifies the entire set of imputations that will be acceptable by all parties 

involved. However, the problem with the core is that in several interesting games 

it is either too big, or empty. 

Another important solution concept is the Nucleolus. The Nucleolus was 

first presented in 1969. Its major advantage is that it consists of a unique 

imputation for a given game. The calculation of Nucleolus may be e^lained by 

means of the notion of the least core as an intermediate step. The shape and the 

size of the core depend on how strong the rationality constraints are. Weak 

constraints result in a large core whereas strong constraints may result in an 

empty core. Starting with a non-empty core, its size may be reduced by uniformly 

strengthening the rationality constraints, or in other words, by increasing the 

worth of each coalition. That is equivalent to saying that the hyperplanes 

defining the core are all "pushed" equidistantly inside thus, reducing the size of 

the core. The "push" is stopped whenever a further push makes the interior of the 

''reshaped" core empty. The h3^erspace defined by the modified constraints is 

called the least core. A game with an empty core may acquire a least core by 

equally relaxing the apparently too strong constraints until a core is available. 

In general, the least core is a convex set of dimension less than the 

dimension of the core. This is true because at the point where the "push" stops, 

some of the rationality constraints coincide. This procedure is repeated, with the 

least core at this time, further reducing its dimension, until a imique point is 

reached. This point is the Nucleolus of the game. Provided that the game 

possesses a non-empty core, the Nucleolus, by definition, belongs to the core. The 

uniqueness and the existence of the Nucleolus have been proved. Hie Nucleolus 

provides a "fair" allocation of the common property 0(11), since it minimizes the 
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largest deviation from the amount a coalition can assure regardless of the 

behavior of the remaining players, hi other words, it minimizes the largest 

deviation from the worth of the coaHtions. Despite its advantages, the Nucleolus 

concept has been accused that it does not accurately account for the relative 

worth of the players. Several rationality constraints may not be given significant 

consideration in the calculation of Nucleolus if they don't cause large deviations. 

Another important solution approach is the Shapley value. While the 

Nucleolus is the outcome of an iterative optimization process, Shapley values are 

the outcome of a fimction. Shapley defined this function axiomatically: the 

Shapley fimction is additive, charges null players notiiing, and is sjmDunetric, Le., 

if the roles of the players change, their allocations are not affected. Null is a 

player whose contribution to every coalition he joins is zero, that is 

It has been proven that the Shapley values are unique. Furthermore, it has been 

proven that they always lie within the core of a cooperative cost allocation game 

with a concave cost function. Shapley values are given by 

where the sum is taken over all coalitions that contain p. Assume that there are 

equal probabilities for the occurrence of a given sized coalition. The above 

equation may be interpreted as that a player p should receive the average of all 

of his contributions to any coalition in which he participates. The intuitive 

explanation of the Shapley value is as follows: an initially empty coalition has, 

by definition, zero worth. If it is asstimed that players join this initially empty 

coalition one by one until the grand coalition is formed, it is easy to determine 

how much value each player adds to the coalition. The Shapley value assigns to 

each player a payoff proportional to the amount that a player adds to the 

vn^ (Eq. 6.6) 

(Eq. 6.7) 
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coalition's value. Since the contribution of a player may depend on the order the 

coalition is formed, all possible permutations are examined. This fact limits the 

practical size of a problem. The final payoff of a player is the average 

contribution of the player to all coalitions he joins, taking all possible orderings 

into account. Shapley values, in short, allocate payofis to the players according to 

their relative a priori powers; or, in a different context, they allocate payofis 

according to the players' negotiating power. Shapley values were used to analyze 

the powers of the United Nations Security Council members. The shocking 

residts revealed that the five permanent members hold 98.1% of the power 

leaving a modest 1.9% to the remaining ten non-permanent members. Li a 

similar analysis, the a priori power indices Ibr a U.S. congressman, a U.S. 

senator, and the U.S. President are in the ratio of 2:9:350!! So, the President is a 

priori 175 times more powerful than a sin^e congressman. 

There are additional solution concepts presented in the literature, such as 

the Kernel, the Bargaining Set, etc. There are also sohition concepts for 

particular classes of games, or based on different descriptions of a game. 

6.3.3 Con^arison of Solution Concepts 

The preceding section did not answer the question '̂ ^hich solution 

methodology to adopt?'' However, no definite answer exists for this question. 

Which solution concept to accept depends on the attributes of the particular 

application under consideration. The xmderlying philosophies of the different 

solution approaches are quite different and, in general, so are the results they 

jdeld. 

The core is useful in that it provides the entire set of imputations that wiU 

keep all coalitions satisfied, some more and some less. If a unique solution is 

somehow reached, it is useful to always examine whether it belongs to the core. 
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Li the general case, if the superadditivity property is not assumed, the 

Nucleolus is not monotonic. Monotonidty is the property that indicates that if a 

coalition's worth is increased, its share should not be decreased. Lack of 

monotonidty implies that the players have no incentive to economize. However, 

the Nucleolus guarantees some minimal deviation from the assured allocations. 

On the other hand, the Shapley values may not lie within the core of a game 

under certain circumstances. This implies that one or more coaUtions have no 

incentives to participate in the game. la iact, they have incentives not to 

participate. These concerns are not valid, however, if the characteristic fimction is 

superadditive and concave. An additional comment is that, in general, the order 

of the players with regard to their payo£& is preserved in both Nucleolus and 

Shapley value solutions. 

In sjonmetric problems, both Nucleolus and Shapley values 3deld identical 

results. IQ non-s3nmmet3ric games with strong coalitions, a Nucleolus-based 

allocation is more sensitive to changes to the worth of the coalitions than a 

Shapley-derived solution. In such games, the range of allocations (difference 

between minimum and maximum allocation) is larger in Nucleolus-based 

solutions. The strongest player(s) in a game, — where a player's strength is 

identified by his contribution to the coalitions he joins — would probably prefer an 

allocation based on the Nucleolus, whereas the weakest would £9Lvor the Shapley 

values. The converse holds true for games with weak coalitions. 

6.3.4 A Small Example Problem 

The following example is intended to introduce a simple method of 

modeling the transmission cost allocation problem, identify the basic 

components of the game, and demonstrate the concepts presented so fsur. 
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Assume there is a single transmission line and its owner uses the 

following pricing rule: If the power to be wheeled under a contract is less than 100 

MW, the user(s) is charged a flat $1000. Otherwise, if the power to be wheeled is 

(100 + AP) MW, then the user(s) is charged $(1000 + lOAP). Further assume that 

company A ^player 1) wants to deUver 80 MW, company B (player 2) wants to 

deliver 30 MW, and company C flayer 3) wants to deliver 40 MW. All three 

transactions are in the same direction. 

If any company contacts the line owner individually, it wiU be charged 

$1000. If companies A and B get together and contact the line owner together, 

they will be charged $1100, so they wiU realize $900 in savings over the 

cimiulative amount they would have paid, had they contacted the line owner 

independently. So, ^1, 2) = 9(K). Following the same logic, the game is set xq) as 

follows: 

<5(1) = <I»(2)=<&(3) = 0 

<5(1, 2) = 900 

«»(1, 3) = 800 

<I»(2, 3) = 1000 

<5(1, 2, 3) = 1500 

The characteristic function, the game imputations, and the final payoffs 

represent cost savings. If Ap denotes the payoff to player p, the individual 

rationality criterion requires that 

A i > 0  

A2SO 

A3 SO 

The coalitional rationality criterion reqiiires that 
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+• A2 — 900 

Ai + A3 > 800 

A2 + A3 > 1000 

Finally, the Pareto optimality criterion requires that 

Ai + A2 + A3 = 1500 

The triangle 1-2-3 in Figure 6.1 is the set of imputations. This set is 

reduced to the core of the game (blackened area) by the coaHtional rationahly 

constraints. The results, according to the Nucleolus and Shapley values solution 

methodologies, are presented in Table 6.1. 

Ih section 6.5, the same modeling process is applied to a larger network. 

For the sake of simpUcity in resultant presentation, only 3 players were 

considered. The set up of the game model follows the same steps as in this small 

example. 

2 

Figure 6.1 Visual Representation of the Solution of the SmaU Example Problem 
(Figure not in scale) 
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Table 6.1 Solution of the Small Example Problem 

Nucleolus Shapley values 

Profit Allocation Ai = = 400 Ai = = 450 

A2 = = 600 A2 = = 550 

A3 = = 500 A3 = = 500 

Corresponding Costs £1 = = 600 £1 = = 550 

62 = = 400 62 = = 450 

€3 = = 500 e3 = = 500 

6.4 Transmission Cost Allocation Game Modeling 

As already mentioned in the chapter introduction, the electric utility 

industry faces a number of challenges today, as a result of moving towards a 

more competitive environment, hi general, a large number of transmission 

transactions are accommodated simultaneously and there are many entities 

utilizing the transmission grid at the same time. One problem that needs to be 

addressed is the development of imiversally accepted transmission costing 

approaches and subsequently the development of cost allocation schemes to 

fairly charge each participant for his share of the cimiulative transmission costs. 

Game models are particularly suitable for cost allocation and division of common 

goods problems. However, there is more than one way to set up a cost allocation 

game model. 
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6.4.1 Benefit Games 

The players of a game form coalitions and agree to correlate their 

strategies in return for more advantageous payofts than if they had entered the 

game as individual agents. Li a cost allocation cooperative game, all players 

expect to pay less, or in otiier words, to save over the amount they otherwise 

would have to pay had they acted independently. Therefore, it is convenient to 

model the game with regard to t^e savings realized over the costs that would 

have incurred in a non-cooperative scenario. The characteristic function, the game 

imputations, and the final payoffs represent profits (or benefits, or cost savings). 

Such a game is said to have been developed within the profU framework. The 

values of the characteristic fimction of a benefit game are the lower bounds of the 

final payofife. 

Developing a game in the cost framework results in an equivalent model. Ih 

such a game, the characteristic fimction and the game imputations represent 

costs. The final payoffs are each player's actual cost share. However, the players 

in a cost game can not perceive directly how much savings they had realized as a 

residt of their cooperation. The characteristic fimction values are upper boimds of 

the final payo£&. 

It should be stated that the only difference between the two modeling 

firameworks is in the development of the characteristic fimction. The philosophies 

behind both firameworks are identical: players and coalitions cooperate in 

anticipation of decreasing their costs (cost firamework) or equivalently, realizing 

savings Oprofit firamework). The final payo£& satisfy the criteria of individual and 

coalitional rationality and Pareto optimality. Although t^e two models are 

equivalent, there are some special games in which one type is preferred over the 

other. Finally, it should be noted that some of the definitions in the previous 

section have assumed a benefit game. 
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6.4.2 Separable Costs 

A cost allocation game may be modeled using the concept of the separable 

costs [107]. The separable costs of a coalition F, ^(T), are defined as follows: 

CCD = e(n) - £(n - D VT C n (Eq. 6.8) 

where EQ is the cost fimction of the game. The separable costs criterion requires 

that a game allocation satisfies the following constraint: 

A(r)>C(r)=£(ii)-e(n-r) vr^n (Eq.6.9) 

This criterion provides for an alternative modeling framework, the 

separable costs firamework. The characteristic function in such a game represents 

separable costs. The break-even constraint (or Pareto optimality constraint) 

must also be satisfied. It has been proved that the separable costs criterion 

together with the Pareto optimality criterion are equivalent to the two 

rationality criteria (coalitional and individual) considered together with the 

Pareto optimality criterion. The final payoffs are each player's cost share. 

Although the separable costs modeling views the cost allocation problem firom a 

different viewpoint and provides significant insights, it may exhibit problems in 

games with a large number of players and incomplete data availability. La such 

instances, setting up the characteristic function is troublesome. 

6.5 Numerical Results 

6.5.1 Description of Test Cases 

The test system used is shown in Figure 6.2. Line reactances are presented 

in Table 6.2. There are two native loads (Buses 3 and 6) and two native 

generators (Buses 1 and 4) in this system. Buyers and sellers potentially exist at 

Buses 2, 3, 4, and 5. The generator at Bus 4 is switched on on hour 10 and its 

output is fixed at 400 MW (or 4 p.u.). This unit is suddenly turned off on hour 18. 
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Grenl Sel2 
Loadl 

Buy2 Load2 
Gen2 Buyl 

Figure 6.2 Test System. 

Table 6.2 Test System Line Data 

Line# X ^.u.) 

1 - 2  0.37 

2 - 3  0.13 

•
 

CO 

1.05 

4 - 5  0.64 

5 - 6  0.30 

6 - 1  0.41 

The two transactions are part of a firm power transmission contract and have 

identical load duration curves. Their chronological load profiles depend on the 

test case under study. 

For the first test case (game 1) both transactions have identical load 

profiles. The first transaction is fix)m Bus 2 to Bus 5 with a peak load of 400 

MW, and the second is firom Bus 3 to Bus 4, again with a peak load of 400 MW. 
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The chronological profiles of the transactions for test case 1, along with the 

native load profile, are shown in Figure 6.3. Since it is only transaction 1 (iplayer 

1) that is modified throughout the different test cases, transaction 2 flayer 2) 

and the native loads Oplayer 3) remain unaltered for all games. 

The cost function used for these test cases is based on a capacity charge. 

Each company is charged based on the peak line loading it causes while 

deUvering power via the grid. Each company is charged $100/p.u. peak line 

loading for the 24 hour modeling period. Since power flows are necessary to 

determine the line loadings, a DC power flow program was used fosses are not 

considered). Each one of the six lines of the system was checked individually with 

1600 

g" 1200--

800"-

400 

transaction 1 
transaction 2 

A native load 
total load profile 

8 12 16 

Hour of the day 

Figure 6.3 Chronological Profile of Transactions in Game 1 
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regard to its chronological loading, hi fact, each test case consists of a set of six 

dependent single line games. 

Four different test cases were performed and their results are presented in 

this section. These test cases are identified as games 1 through 4 and the 

differences among them are es^lained in tiie next paragraphs. Each test case 

allocates the cost savings realized through cooperation to the three players 

involved. Cost savings are realized on a per system line basis; thus, each test 

case consists of a set of six distinct game theoretic cost allocations. All these test 

cases last for 24 hoiirs. la the tested games, transmission Hnes are assumed to 

have infinite capacity, Le., no maximum loading limits are present for any of the 

lines. In reality, this is obviously incorrect. However, even if transmission limits 

are present and congestion occurs, it is the power flow program that will solve the 

situation. The cost allocation is executed only after the power flow is completed 

and individual line flows are calculated. Li that context, the presence of 

maximum allowable line flows does not alter the qualitative characteristics of 

the game theoretic cost allocation presented in this chapter. The nimierical 

output of the power flow might be different, resulting in a different cost 

calcidation and subsequent allocation. 

Another issue is how to handle counterflows. Counterflows occur in most 

electric networks, lii some instances, they may be helpfiil in utilizing the network 

more ef&dently. hi transmission pricing models presented in the past, 

coimterflows either were charged as normal line flows, or were not charged 

because their importance was recognized, or were even reimbursed (negative 

charging), hi the test cases presented in this section, the significance of 

counterflows in reducing peak loadings is recognized and they are reimbursed. 

This explains the negative signs in some of the entries in the results tables that 

follow. 
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Game 1: Transactions 1 and 2 occur at the same time and have identical load 

profiles. The transactions begin with hour 6, end with hour 15, and their peak 

value is 400 MW each. Buses 2 and 3 are the selling points (for transactions 1 

and 2 respectively) and Buses 5 and 4 are the buying points. 

Game 2: Transaction 1 starts prior to the beginning of our modeling period, ends 

with hour 3, and is again repeated, beginning with hour 18. Ih other words, the 

load profile of transaction 1 is shifted both backwards and forward in time by 12 

hoiurs compared to game 1. 

Game 3: This game is nearly identical to game 1; the only difference is that the 

selling and bussing points of transaction 1 are reversed. So, Bus 5 is now selling 

power to Bus 2. The chronological load profiles are as in game 1. 

Game 4: This game is nearly identical to game 2; the only difference is that the 

selling and buying points of transaction 1 are reversed. So, Bus 5 is now selling 

power to Bus 2. The chronological load profiles are as in game 2. 

6.5.2 Implementation 

A simple DC power flow program was developed using the modeling 

language AMPL [108]. The game solutions were calculated using the 

Mathematica subroutines described in [106]. The remaining costs and savings 

calculations were performed using Excel. 

6.5.3 Input Data 

In order to generate the necessary data to run the games, power flows were 

run to calculate the line loadings for each possible combination of transactions. 

The set of all possible combinations is {(1), (2), (3), (1,2), (1,3), (2,3), (1,2,3)}, 

where 1 stands for the first transaction, 2 for the second, and 3 for the native load 

and generation. 
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The necessary input data were developed as in the small example problem 

presented in section 6.3.4. The first three columns of Table 6.3 show the line 

costs corresponding to each transaction, if each transaction were to be 

accommodated independently. That is how much money each transaction would 

cost in a non-cooperative context (non-cooperation mode). These costs are referred 

to as El, e2, and e3. The remaining columns with headings el+e2, E1+£3, £2-i-£3, 

and E1+E2+83 present the additive costs of the non-cooperative case for every 

possible combination of transactions, Le., simply adding the appropriate entries 

in the first three cohimns. Since the costing rule assumed for these test cases 

depends only on the line peak loadings, and since the profiles of each individual 

transaction remain unaltered in all games, the input data are common for all 

games. 

Table 6.4 presents the transaction costs corresponding to simtdtaneously 

wheeling the combinations (1,2), (1,3), (2,3), and (1,2,3) respectively (cooperation 

mode). These are the columns with the headings E12, £13, E23, and el23. The 

Table 6.3 Input Non-Cooperative Cost Data 

line El E2 e3 el+E2 £l+e3 £2+e3 E1+£2+E3 

1-2 251.03 144.83 338.62 395.86 589.66 483.45 734.48 

2-3 148.97 144.83 338.62 293.79 487.59 483.45 632.42 

3-4 148.97 255.17 261.38 404.14 410.35 516.55 665.52 

4-5 148.97 144.83 198.97 293.79 347.93 343.79 492.76 

5-6 251.03 144.83 198.97 395.86 450.00 343.79 594.83 

6-1 251.03 144.83 120.35 395.86 371.38 265.17 516.21 

total 1200.00 979.31 1456.90 2179.31 2656.90 2436.21 3636.21 
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Table 6.4 Input Cooperative Cost Data and Corresponding Cost Savings 

line £12 el3 £23 £123 A12 A13 A23 A123 

Test case (game) 1 

1-2 395.9 275.9 302.4 346.9 0.0 313.8 181.0 387.6 

2-3 4.1 450.3 302.4 341.7 289.7 37.2 181.0 290.7 

3-4 404.1 224.1 234.8 383.8 0.0 186.2 281.7 281.7 

4-5 4.1 347.9 165.2 203.1 289.7 0.0 178.6 289.7 

5-6 395.9 271.4 165.2 416.2 0.0 178.6 178.6 178.6 

6-1 395.9 371.4 265.2 516.2 0.0 0.0 0.0 0.0 

total 1600.0 1941.0 1435.2 2207.9 579.3 715.8 1001.0 1428.3 

Test case (game) 2 

1-2 287.2 275.9 302.4 239.7 108.6 313.8 181.0 494.8 

2-3 112.8 375.9 302.4 339.7 181.0 111.7 181.0 292.8 

3-4 292.4 224.1 234.8 272.1 111.7 186.2 281.7 393.4 

4-5 112.8 236.2 165.2 200.0 181.0 111.7 178.6 292.8 

5-6 287.2 254.1 165.2 290.3 108.6 195.9 178.6 304.4 

6-1 287.2 354.1 265.2 390.3 108.6 17.2 0.0 125.9 

total 1379.7 1720.3 1435.2 1732.1 799.7 936.6 1001.0 1904.1 

Test case (game) 3 

1-2 106.2 526.9 302.4 418.3 289.7 62.8 181.0 316.2 

2-3 293.8 301.4 302.4 265.2 0.0 186.2 181.0 367.2 

3-4 106.2 393.1 234.8 234.9 297.9 17.2 281.7 430.7 

4-5 293.8 169.3 165.2 314.1 0.0 178.6 178.6 178.6 

5-6 106.2 450.0 165.2 305.2 289.7 0.0 178.6 289.7 

6-1 106.2 250.0 265.2 105.2 289.7 121.4 0.0 411.0 

total 1012.4 2090.7 1435.2 1642.8 1166.9 566.2 1001.0 1993-5 
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Table 6.4 (continued) 

line el2 el3 £23 el23 A12 A13 A23 A123 

Test case (game) 4 

1-2 214.8 401.4 302.4 365.2 181.0 188.3 181.0 369.3 

2-3 185.2 301.4 302.4 265.2 108.6 186.2 181.0 367.2 

3-4 217.9 298.6 234.8 234.8 186.2 111.7 281.7 430.7 

4-5 185.2 161.7 165.2 202.4 108.6 186.2 178.6 290.3 

5-6 214.8 261.7 165.2 225.5 181.0 188.3 178.6 369.3 

6-1 214.8 147.9 265.2 202.4 181.0 223.4 0.0 313.8 

total 1232.8 1572.8 1435.2 1495.5 946.5 1084.1 1001.0 2140.7 

adjacent columns, A12, A13, A23, and A123, present the difference in costs (or 

cost savings, or profits) between the cooperation and the non-cooperation modes. 

These numbers result by subtracting the appropriate non-cooperative cost data 

(Table 6.3) from the corresponding cooperative cost entries in the first four 

col\unns of Table 6.4. For example, if transactions 1 and 3 are to be performed in 

a non-cooperative scenario, they result in a cumulative peak flow of 2.93794 p.u. 

on line 2-3 with a corresponding cost of $293,794 (column £l+£2, row 2-3, of Table 

6.3). If the same transactions are performed cooperatively following the scenario 

of game 1, the corresponding cost is $4,138, which implies a cost saving of 

$289,656 for line 2-3 for the 24-hour modeling period. According to the game 

formulation, the total payoff to be distributed is the worth of the grand coalition, 

^(11). With reference to the input data, the per line profits to be distributed for 

each game are tabulated in coliunn A123, profits for the big coalition. 
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Tables 6.3-6.4 include all the necessary input data for cost allocation 

calculations either in a cost or in a profit framework. A profit framework was 

assumed during the execution of the presented test cases, Le., cost savings (or 

profits) are the quantity distributed. Transaction costs follow logically. Cost 

allocation may be also performed in a separable cost framework or directly in the 

cost framework. 

6.5.4 Output Results 

Profits are allocated to the players of the game, Le., transactions in the 

presented test cases, according to the two most widely used solution 

methodologies, namely Nucleolus and Shapley values. The allocated profits are 

subtracted from the corresponding costs to determine the final cost allocations. 

The results presented in Table 6.5 are the final cost allocations. The symbols Ne 

and SVe are used for die final cost distribution according to Nucleolus and 

Shapley values respectively, to differentiate the output cost allocation from the 

input cost data. The total amount of cost savings for each line is of course equal 

for each method and also equals the respective entry in the A123 column of the 

corresponding input data. It is the individual player allocations that depend on 

the method, not the total amoimt distributed. It is interesting to note how the 

two allocation mechanisms yield different results for each transaction-player. 

6.5.5 Comments and Observations on Results 

A niunber of observations are in order at this point. The test cases clearly 

indicate the large cost savings realized through cooperative accommodation of 

multiple transactions. In some instances, costs are reduced by more than half 

when independent transactions cooperate. In such cases, it woiild be beneficial for 

the power wheelers to contact the transmission owner as a group and not on an 
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Table 6.5 Output Results 

line Nel N£2 Ne3 total SVel SVe2 SVe3 total 

Test case (game) 1 

1-2 147.8 107.9 91.2 346.9 129.9 90.1 127.0 346.9 

2-3 75.8 -72.2 338.1 341.7 57.9 -18.1 301.9 341.7 

3-4 149.0 207.4 27.4 383.8 117.9 176.4 89.5 383.8 

4-5 93.4 -89.3 199.0 203.1 63.7 -29.8 169.2 203.1 

5-6 251.0 144.8 20.3 416.2 221.3 115.1 79.9 416.2 

6-1 251.0 144.8 120.3 516.2 251.0 144.8 120.3 516.2 

total 968.0 443.5 796.4 2207.9 841.7 478.4 887.8 2207.9 

Test case (game) 2 

1-2 85.1 54.3 100.3 239.7 76.0 36.2 127.4 239.7 

2-3 74.5 1.0 264.1 339.7 62.9 24.1 252.6 339.7 

3-4 93.1 123.6 55.3 272.1 62.1 120.5 89.5 272.1 

4-5 72.9 1.8 125.3 200.0 62.1 24.6 113.3 200.0 

5-6 167.1 78.2 45.1 290.3 158.3 60.7 71.3 290.3 

6-1 188.1 90.5 111.7 390.3 188.1 90.6 111.7 390.3 

total 680.8 349.5 701.8 1732.1 609.6 356.7 765.8 1732.1 

Test case (game) 3 

1-2 158.7 -65.8 325.3 418.3 147.2 -18.1 289.1 418.3 

2-3 55.9 54.3 155.0 265.2 55.9 54.3 155.0 265.2 

3-4 74.5 -34.7 195.0 234.8 46.8 20.7 167.3 234.8 

4-5 149.0 144.8 20.3 314.1 119.2 115.1 79.9 314.1 

5-6 195.5 -89.3 199.0 305.2 165.7 -29.8 169.2 305.2 

6-1 45.5 0.0 59.7 105.2 45.5 0.0 59.7 105.2 

total 679.1 9.4 954.3 1642.8 580.3 142.2 920.2 1642.8 
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Table 6.5 (contiiiued) 

line NEI Ne2 Ne3 total SVel SVe2 SVe3 total 

Test case (game) 4 

1-2 125.5 26.6 213.1 365.2 126.7 24.1 214.3 365.2 

2-3 49.0 50.0 166.2 265.2 37.8 36.2 191.2 265.2 

3-4 74.5 39.8 120.5 234.8 49.7 70.9 114.3 234.8 

4-5 73.0 76.4 53.0 202.4 62.6 62.2 77.6 202.4 

5-6 123.9 27.4 74.3 225.5 125.9 24.5 75.1 225.5 

6-1 48.8 99.7 54.0 202.4 79.0 84.5 38.9 202.4 

total 494.7 319.8 681.0 1495.5 481.7 302.5 711.3 1495.5 

individual basis. Li addition to the lower transaction costs for the individual 

transactions, the transmission grid is more efficiently utilized. Li the test cases 

presented, profits are realized as a result of i) the non-coincidence of the 

transaction load profiles, and ii) counterflows. However, this observation can not 

be generalized, hi general, the cost savings realized depend on the costing rules 

adopted. These rules must be acceptable by all parties involved, which, itself, is a 

non-trivial task. 

Since the cost function used is concave, the Shapley values always lie 

within the core. Clearly, different solution methodologies yield completely 

different results. The coalitions in the tested cases were strong; hence, the 

Shapley values demonstrate a tenden<  ̂to increase the minimum profit realized 

by any player. The range of profits allocated to players, ie., the difference 

between the minimum and maximum values, is smaller in the Shapley value 

resxilts than in the Nucleolus results. The output results indicate that the 
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strongest player, in most instances, would prefer a Nucleoliis-based solution, 

whereas the weakest player would favor a Shapley-based allocation. It is 

interesting to note that the order of the players, with respect to their profit 

allocations, is preserved with either solution approach. That is, both solution 

procedures identify and classify the strengths of the players, or, in other words, 

their negotiating powers. However, each solution approach weights the strengths 

on a different scale. 

All players are saving over the non-cooperative mode costs; thus, all should 

be satisfied. The resulting profit allocations provide subsidy-firee transmission 

cost distributions. Furthermore, credit is given to transactions whenever 

appropriate. However, results depend heavily on the adopted costing mechanism. 

It should be emphasized that using different transmission cost fimctions, savings 

woiild be greater or smaller and would be realized because of similar or different 

reasons than the ones identified in the test cases presented. 

Game theory provides a suitable firamework for the development of 

transmission cost allocation models. In alternative models, not every line may be 

an individual game. Moreover, probably not even every transaction should be an 

individual player. Transactions may be grouped and each portfolio of 

transactions can be a player in a generalized game. Further, the interconnected 

power system consists of distinct areas. Whereas in the simple examples 

presented in this document each line was the environment for a game, in larger 

scale problems this role may be played by control or geographical areas. 

Games provide indications about the negotiating power of each player. 

Therefore, they may be used in order to identify factors and situations that would 

strengthen the negotiating power of a player, hi that sense, they can be used as 

strategic planning and development tools to analyze "what if situations. 
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6.6 Chapter Summary 

Geune theory was used to develop a transmission cost allocation scheme. 

Such schemes attempt to fairly allocate the fixed transmission costs among the 

multiple users of the transmission network. One of the major difi&culties 

associated with the development of allocation mechanisms is that what may 

seem "fair" to one participating party, may seem completely unfair to another 

party. An allocation framework was developed using simple costing rules. Two 

commonly used solution approaches were used to implement cost allocations for 

a ntmiber of test cases. The entire allocation procedure was described in detail 

and output results were discussed. 
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7. CONCLUDING CHAPTER 

7.1 Research Contributions 

In developing the models for this project, flexible accurate models and 

rapid execution times were two of the primary concerns. The combined scheme 

presented decouples the problem into two smaller subproblems and treats each 

subproblem separately. Coordination among the subproblems is provided by 

means of the updated Lagrangian multipliers. These models might be further 

enhanced with more sophisticated optimization techniques, possibly requiring 

increased solution times. Because of the general lack of experience with the 

effects of interfacing the two sets of complex models, it was decided to use 

nonlinear methods rather than introducing the effects of linearization. The 

overall solution approach employs the bisection method to perform the necessary 

single line searches, but it also uses the proven robustness of Lagrangian 

multipliers-based schemes to achieve optimal scheduling. The importance of 

addressing the problem of interfacing fuel and environmental constraints in a 

single dispatching tool, was presented in the introductory chapter of this 

dissertation. 

However, addressing the combined problem in a concise and consistent 

manner was only the end result of this project. The individual subproblems, 

namely fuel-constrained and emission-constrained dispatching, have received 

considerable attention and sufficient treatment. The contributions of each part of 

this research work are presented in the remainder of this section. 
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7.1.1 Fuel-Constxained Scheduling 

In the foel-constrained model, the concept of "fuel groups" was revisited. 

This concept, originally proposed by Lamont et al. [15], was expanded in this 

work with respect to availability of fiiel supplies and contracts. The focus shifted 

firom. the fuel networks to the modeling of the fiiel supply contracts and their 

impacts. Miiltiple fuel contracts may be available, consisting of multiple blocks 

with minimum and maximum block limits and block prices. This allows 

modeling the fact that fiiel supplies may be purchased in blocks, just like many 

other commodities, hi the conventional economic dispatch development, the fuel 

at each power plant or generating unit has been associated with a single price. Li 

order to provide more realistic modeling of fiiel prices, escalating as well as fixed 

prices were considered for each type of fiieL Escalating prices may be increasing 

or decreasing to represent incentives or disincentives to constmie. The result of 

the corresponding optimization problem is the presented optimal consumption 

ordering of the available fuel contracts, which is an original development. This 

ordering provides power producing companies with an accxirate way to determine 

their fuel expenses based on their forecasted load requirements, and to consume 

fuel suppHes in the least costly manner. These new models of the fuel supply side 

were subsequently incorporated into a conventional fuel-constrained dispatch 

algorithm. 

7.1.2 Emission-Constrained Scheduling 

On the emission side, classes of emission constraints were defined in order 

to categorize the possible environmental limitations imposable on power 

generation £Eicilities. Although the main focus is currently on the federal air 

pollution limitations, power facilities are also subject to local constraints. 

Classification of the various emission targets recognizes the need for 
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simultaneous and synchronized satisfaction of all applicable constraints. It was 

also recognized that various pollutants exhibit different degrees of correlation 

with the fuel supplies used. For example, dispatching a system subject to limited 

NOx emissions, may increase or decrease its SO2 emissions with respect to the 

economic dispatch emission levels. Thus, a multi-pollutant problem is a multi-

objective optimization problem and was treated as such. Emission allowances, a 

new concept introduced by the 1990 CAAA, are fully recognized as an integral 

cost component that must be accounted fbr in dispatching calculations. The 

restdting multipliers from the final generation schedule, may be used to indicate 

to the company management whether it should engage in more aggressive 

allowance trading. Although allowances are ciurently priced at levels lower than 

initially anticipated, it is expected that their prices will rise in the near fiiture, 

beginning with phase II of the compliance program. 

As previously stated, the developed optimization technique combines the 

necessary elements for simpHcily and fast execution, such as single line searches, 

with the likewise necessary elements to ensure the robustness of the overall 

algorithm, such as coordination between the different levels via Lagrangian 

multipliers. A methodology with some similarities to the one developed within 

this project, was developed independently dtiring the same time firame, by Lee et 

al. [71]. However, in the author's opinion, the models developed in this work 

present a much higher degree of modeling accuracy and perform a multi-level 

optimization process in order to satisfy not only multiple pollutants, but 

multiple classes of emission constraints as well. 

Interest in emission-constrained dispatching should be renewed as we get 

closer to the implementation of phase H and the increased current federal 

interest in CO2 and particulate emissions. The algorithm, models, and 

corresponding software developed during this work have extended the 
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capabilities of the algorithms presented so far and should be a useful tool for 

power producers in their efforts to comply with emission regiilations. 

7.1.3 Transmission Cost Allocation 

The last part of this work reported on the applicabihty of cooperative game 

theory on the allocation of transmission costs. Shapley values previously have 

been recognized as the most promising of the solution concepts classified as 

"indices of power." This work applied Shapley values to simple cost allocation 

problems to establish the appUcability of cooperative game theoretic solution 

approaches. In this context, this research extended the very limited experimental 

work published thus &u: on the subject, and offered Shapley values as an 

alternative allocation mechanism to the Nucleolus concept. This is an important 

addition, because whereas Nucleolus basically attempts to minimize the 

maximum dissatisfEiction expressed by any participating entity, Shapley values 

reflect the relative negotiating power of each player and allocate costs 

accordingly. Power producing parties can benefit firom cooperative game results, 

since such results will indicate potentially profitable alliances. Moreover, the 

availability of various allocation schemes and the comparison of the 

corresponding results, provides usefid insights to the strategic positioning of the 

various transmission grid users. 

7.2 Suggestions for Future Work 

Each part of the work presented in this dissertation can be expanded to 

include additional features. 

The fuel-constrained dispatch could be enhanced to include: 

• fuel network models 
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* availability of fuel storage 

* options for fuel trading, in case of fovorable fuel market conditions 

* fuel blending models. 

The emission-constrained dispatch could be expanded to include: 

* start up and shut down emission models 

* improved unit emission modeling 

* emission allowance trading capabilities, once full scale allowance markets are 

established 

* multiple hoiu: / multiple unit emission limit enforcement 

• use as a part of power bidding strategy decisions. 

The further enhanced dispatch algorithm could be interfaced with a unit 

commitment program and/or a previously developed fimy logic scheduling 

algorithm to produce an operational as well as planning tool. 

Since on-line implementation was a major motivation during the 

development of this work, ways of improving execution times should be 

investigated. These may include alternative approaches in constraint processing, 

faster single line searches, use of acceleration Actors, and improved constraint 

screeening methods. Further, efScient ways to detect and correct cyding may be 

researched. 

Allocating transmission costs in a fair manner, acceptable by all parties 

involved, is an ongoing issue that depends largely on political decisions yet to be 

finalized. The work on this issue presented in this dissertation, may serve as a 

guideline on the applicability and usefulness of game theoretic models. 

Alternative pricing schemes may be used, once such schemes are agreed upon by 

all participating companies or established by regulatory agencies. Further, 

additional solution concepts might be used and the corresponding results could 

be comparatively analyzed with the results from Nucleolus and Shapley 
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solutions. Finally, the applicability of non-cooperative game theory should be 

investigated and non-cooperative game models should be developed for 

additional insight. 

7.3 Conclusions and Summary of Work 

The research presented herein focused on the development and 

implementation of enhanced dispatching strategies that incorporated fuel and 

emission constraints of varioiis types, as well as the development and evaluation 

of a transmission cost allocation mechanism based on cooperative game theory. 

Modeling of the fuel supply has been inadequate in the dispatching 

schemes presented thus far and failed to capture the competitive forces of fiiel 

markets. This work introduces an optimal consumption ordering of &iel blocks 

and correspondingly, fuel price schedules with entries dependent on forecasted 

fiiel needs. Fuel prices are no longer fixed, single level parameters. Fuel limits 

can be more accurately modeled. The complete foel dispatch mechanism has the 

capability of handling take-or-pay fuel contracts as well as over-the-limit fuel 

constraints, by means of a Lagrangian multipliers based updating process. 

Environmental constraints are still one of the major concerns of power 

producers. Federal as well as local limitations may be constraining emisssions of 

various pollutants. The developed dispatch methodology includes constraints 

over varying numbers of time periods as well as constraints limiting different 

subsets of generating units. The complete algorithm possesses also the 

capability of including the worth of emission allowances in the dispatch 

calculations. 

Inter&dng the two dispatch modules produces an enhanced dispatching 

tool that can successively satisfy fuel and emission constraints simultaneously. 
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Niunerical resiilts have indicated reasonable execution times, thus mfllring the 

presented approach suitable for on-line implementation. 

Cooperative game theory concepts have been used extensively in models 

developed for economic problems. They have also been used to propose solutions 

for several power systems problems in the past. One of the problems that 

emerged from the opening of transmission networks to competition, is the 

efficient and fair allocation of transmission costs to transmission grid users. A 

mechanism to perform such an operation is developed. Capacity-based costing 

rules are followed in order to evaluate the proposed framework for some simple 

transmission scenarios. Cooperative game solution concepts are applied. The 

output restdts are interesting in that they identify the relative negotiating 

powers of the participating entities. Hence, the developed framework may be of 

assistance in order to not only perform actual cost allocations, but investigate 

"what if' scenarios. 
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APPENDIX. TEST DATA 
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Table Al. Unit Fuel Coefficients 

Unit i fu» fi.d 

1 +4.91252E+01 +1.00849E+01 +5.55911E-05 

2 +6.30687E+01 +9.47263E+00 +1.32030E-04 

3 +5.80768E+01 +9.78112E+00 +1.04600E-04 

4 +1.15790E+02 +8.28213E+00 +1.51298E-04 

5 +4.08594E+01 +9.83925E+00 +6.69778E-05 

6 +5.32498E+01 +8.52691E+00 +4.41090E-06 

7 +5.82490E+01 +9.28746E+00 +7.62027E-06 

8 +5.18628E+01 +9.35120E+00 +2.20925E-04 

9 +1.38514E+02 +7.65466E+00 +3.05310E-05 

10 +1.06755E+02 +7.97224E+00 +2.90514E-05 

11 +7.59211E+01 +8.69354E+00 +4.75855E-06 

12 +8.60796E+01 +8.68309E+00 +4.55527E-06 

13 +1.73124E+02 +7.68484E+00 +1.39491E-05 

14 +1.83389E+02 +7.71180E+00 +1.37872E-05 

15 +2.31141E+02 +7.34518E+00 +5.15577E.06 

16 +2.3088lE+02 +7.23297E+00 +6.11535E-06 

17 +5.48664E+01 +9.22072E+00 +2.43461E-04 

18 +1.28143E+02 +6.28414E+00 +4.44444E-04 

19 +9.28283E+01 +8.24405E+00 +8.97951E-05 

20 +8.95153E+01 +8.06570E+00 +8.85299E-05 

21 +4.34687E+01 +9.61423E+00 +2.98455E-04 

22 +7.05720E+01 +9.19578E+00 +1.02912E-04 

23 +9.28344E+01 +8.62551E+00 +9.12479E-05 

24 +1.91700E+02 +7.78180E+00 +1.45983E-05 

25 +1.01700E+02 +9.80180E+00 +2.08321E-05 
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Table Al. (continued) 

Unit i fu fi.d 

26 +3.28410E+02 +7.09290E+00 +5.27910E-06 

27 +6.31194E+01 +8.46470E+00 +1.49513E-04 

28 +1.06470E+02 +8.81950E+00 +6.60177E-05 

29 +1.08410E+02 +8.72970E+00 +1.64551E-05 

30 +1.75260E+02 +8.05590E+00 +3.10679E-05 

31 +1.76800E+02 +8.45730E+00 +2.44011E-05 

32 •»-1.51560E+02 +9.01030E+00 +1.36922E-05 

33 +1.89340E+02 +7.57660E+00 +8.82950E-06 

34 +2.18280E+02 +7.57990E+00 +6.23960E-06 

35 +2.57086E+02 +3.81782E-03 +2.74184E-03 

36 +2.23376E+02 +1.69551E+00 +2.26489E-03 

37 +4.04252E+01 +9.75192E+00 +6.76587E-03 

38 +2.97185E+01 +9.97910E+00 +2.50104E-04 

39 +5.12470E+01 +9.35632E+00 +2.95299E.04 

40 +5.06696E+01 +9.44378E+00 +2.72428E-04 

41 +7.80354E+01 +8.93495E+00 +1.87459E-04 

42 +6.35170E+01 +9.39706E+00 +1.6148 lE-04 

43 +1.75920E+02 +8.70820E+00 +2.08682E-05 

44 +1.13713E+02 +7.70187E+00 +1.49338E-05 

45 +1.61914E+02 +7.31305E+00 +3.56645E-06 

46 +2.10620E+02 +7.04756E+00 +7.53264E-07 

47 +1.36103E+02 +7.52953E+00 +5.78983E.05 

48 +1.67632E+02 +7.06718E+00 +6.39584E-05 

49 +1.29019E+02 +7.48885E+00 +3.80494E-05 

50 +9.38830E+01 +8.885lOE+00 +2.72269E-06 
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Table A2. Unit NOx Coefficients 

Unit i ni  ̂ ni,b ni,d 

1 +1.04458E-01 +6.34024E-04 +3.55595E-07 

2 +1.09577E-01 +4.02110E-04 +3.79684E.07 

3 +1.08579E-01 +6.29355E.04 +3.53607E-07 

4 +1.77452E-01 +6.39346E.04 +1.91962E.08 

5 +1.76431E-01 +7.68277E-04 +2.97151E.09 

6 +1.05668E-01 +1.30145E-03 +1.61187E.09 

7 +9.90552E-02 +1.34226E-03 +1.02867E-09 

8 +8.42751E-02 +6.66285E-04 +5.36067E-07 

9 +1.25591E-02 +6.2545lE-04 +2.41340E-08 

10 +1.46772E-02 +5.97859E-04 +2.48275E.08 

11 +4.99145E-02 +4.39573E-04 +1.47026E-08 

12 +4.33018E-02 +5.05402E-04 +1.46250E-08 

13 +2.04723E-02 +4.02512E-04 +1.45520E-08 

14 +2.05722E-02 +3.96115E.04 +1.4760lE-08 

15 +9.48992E-02 +7.65308E.04 +8.70536E-09 

16 +1.40532E-01 +3.90357E-04 +1.11808E-08 

17 +8.42751E-02 +6.66285E-04 +5.36067E-07 

18 +1.65360E-02 +4.60802E.03 +5.45902E-08 

19 +1.84787E-01 +2.64671E.04 +4.88485E-08 

20 +1.70551E-01 +6.96129E-04 +1.17654E-08 

21 +4.60069E-02 +8.37999E.05 +1.36076E-06 

22 +1.60326E-01 +8.44705E-04 +6.92502E-09 

23 +1.60591E-01 +8.72990E-04 +9.15675E.10 

24 +8.55547E-02 +3.19504E.04 +2.95598E-07 

25 +1.04292E-01 +1.37655E-04 +3.06659E-07 
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Table A2. (continued) 

Unit i ni,a ni,b ni,d 

26 +9.44293E-02 +6.55928E-04 +9.20563E-09 

27 +8.37546E-02 +2.9968lE-04 +5.90079E-07 

28 +4.77134E-03 +1.88912E-03 +1.02139E-09 

29 +2.14421E-02 +4.34053E-05 +4.09963E-08 

30 +4.29493E.03 +3.45599E-04 +3.24730E-08 

31 +8.30595E-03 +2.25130E-04 +3.57065E-08 

32 +1.19256E-03 +3.66499E-04 +3.33712E-08 

33 +1.85846E-01 +3.05679E-04 +1.33385E-08 

34 +2.30105E-01 +6.61254E-06 +1.47647E-08 

35 +2.35258E-03 +1.40116E-04 +1.68896E-06 

36 +5.02378E-03 +3.94963E-05 +1.84011E-06 

37 +2.90611E-02 +1.06547E.03 +1.57681E-05 

38 +5.04757E-02 +9.69020E-05 +1.29217E-06 

39 +9.89863E.02 +7.02300E-04 +7.48588E-08 

40 +1.04568E-01 +9.00730E-04 +6.19030E-09 

41 +5.25221E-02 +5.27164E.05 +2.66437E-07 

42 +5.17828E-02 +1.94233E-05 +2.75373E-07 

43 +1.93665E-02 +1.73604E-03 +3.70616E-09 

44 +8.26053E-02 +1.50449E-03 +2.09695E.09 

45 +1.43912E-01 +9.69083E-04 +6.12967E-09 

46 +1.00936E-01 +1.36380E-03 +3.25676E-09 

47 +2,32844E-01 +1.05089E-03 +2.18368E-09 

48 +2.29218E-01 +1.05034E-03 +2.66790E-09 

49 +6.94335E-02 +1.02911E-04 +1.79603E-08 

50 +2.99670E-02 +5.14825E-04 +1.26804E-08 
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Table A3. Unit SO2 Coefficients 

Uniti Si,a Si,b Si.d 

1 +7.91851E-02 +1.90105E-03 +5.21790E-08 

2 +1.02690E-01 +1.72277E-03 +1.71238E-07 

3 +1.69823E.02 +2.05046E-03 +1.48311E-08 

4 +2.35063E-02 +3.41997E-03 +7.14286E-09 

5 +1.59058B.02 +3.28595E-03 +4.11537E-08 

6 +8.53788E-03 +3.45493E-03 +1.00488E-10 

7 +2.32691E-02 +3.23966E-03 +1.70699E-09 

8 +9.80545E-02 +1.68909E-03 +5.51173E-08 

9 +6.02560E.02 +1.46630E-03 +1.47425E-08 

10 +1.58906E-01 +1.45271E-03 +4.21536E-08 

11 +2.27460E-02 +2.24567E-03 +1.23512E-09 

12 +3.89329E-02 +1.94001E-03 +5.76506E-09 

13 +4.11345E-02 +2.00860E-03 +4.89124E-09 

14 +4.94254E-02 +1.89898E-03 +5.96842E-09 

15 +4.85918E-02 +3.97373E-03 +2.25878E-10 

16 +8.61091E-02 +3.68128E-03 +2.28178E-09 

17 +2.73809E-02 +2.03488E-03 +2.53896E-07 

18 +5.88152E-02 +1.34759E-03 +3.01269E-07 

19 +1.42619E-01 +4.43038E.04 +2.45763E-07 

20 +1.36455E.01 +3.30122E-04 +2.46778E-07 

21 -i'1.77293E.02 +1.99772E-03 +5.90502E-07 

22 +1.23793E.01 +4.12691E-04 +2.56893E-07 

23 +1.43350E.01 +3.53743E-04 +2.46867E-07 

24 +1.73808E.01 +2.28768E-04 +1.65948E-07 

25 +1.75923E-01 +3.21057E-04 +1.54414E-07 
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Table A3, (continued) 

Unit i Si,a Si,b Si,d 

26 +2.83925E-01 +2.33673E-03 +3.09898E-09 

27 +5.39046E-03 +3.32613E-03 +1.20484E-07 

28 +2.91246E-02 +3.64374E-03 +3.81014E-09 

29 +6.92570E-02 +1.82733E-03 +1.52655E-08 

30 +4.37481E.02 +1.82745E-03 +1.88576E.08 

31 +4.57249E-02 +1.94047E-03 +1.86298E-08 

32 +4.83955E-02 +1.85882E-03 +1.90948E-08 

33 +1.38529E-01 +4.33978E.03 +3.66920E-09 

34 +1.38685E-01 +4.40710E-03 +3.09346E-09 

35 +9.68303E-03 +4.47554E-04 +1.34297E-06 

36 +1.79112E-03 +8.81582E-04 +1.14582E-06 

37 +9.36543E-03 +3.03407E-03 +2.49427E-06 

38 +2.10878E-02 +1.59550E-03 +7.52400E-07 

39 +7.45687E-04 +2.40692E-03 +3.38840E-07 

40 +1.48958E-02 +1.77513E-03 +5.25500E-07 

41 +5.42762E-04 +2.94484E-03 +1.27650E-07 

42 +5.79611E-03 +2.77693E-03 +1.50110E-07 

43 +2.66250E-02 +3.76346E-03 +2.20546E-09 

44 +5.68566E-02 +2.35094E-03 +7.46690E-09 

45 +1.55310E.01 +4.52378E-03 +4.76632E-10 

46 +8.09570E.02 +4.65652E-03 +1.78323E-09 

47 +8.62247E.02 +2.18600E-03 +4.47382E-08 

48 +1.29880E.02 +3.67711E-03 +3.86648E-09 

49 +5.40370E.02 +3.46366E-03 +2.38386E-09 

50 +3.46734E-02 +3.57775E-03 +2.17391E-09 
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Table A4. Unit Modeling Data 

Unit i pBIn Ui 

1 20.00 100.00 1.294 

2 20.00 100.00 1.294 

3 20.00 100.00 1.294 

4 30.00 105.00 1.248 

5 30.00 105.00 1.248 

6 35.00 175.00 1.248 

7 35.00 175.00 1.248 

8 20.00 80.00 1.307 

9 40.00 180.00 1.307 

10 40.00 180.00 1.307 

11 45.00 235.00 1.321 

12 45.00 235.00 1.321 

13 45.00 235.00 1.321 

14 45.00 235.00 1.321 

15 150.00 350.00 1.321 

16 150.00 350.00 1.321 

17 20.00 80.00 1.334 

18 20.00 80.00 1.334 

19 38.00 110.00 1.334 

20 36.00 110.00 1.334 

21 18.00 53.00 1.278 

22 35.00 110.00 1.278 

23 35.00 110.00 1.278 

24 50.00 120.00 1.278 

25 50.00 120.00 1.278 
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Table A4. (contmued) 

Unit i pMn pAfo 
•'i Ui 

26 175.00 375.00 1.278 

27 25.00 80.00 1.275 

28 80.00 175.00 1.275 

29 75.00 180.00 1.275 

30 75.00 180.00 1.275 

31 75.00 180.00 1.354 

32 75.00 180.00 1.354 

33 125.00 330.00 1.354 

34 125.00 330.00 1.354 

35 30.50 52.00 1.295 

36 30.50 52.00 1.295 

37 8.00 21.00 1.295 

38 18.00 53.00 1.295 

39 19.50 65.00 1.235 

40 19.50 65.00 1.235 

41 27.00 90.00 1.235 

42 27.00 90.00 1.235 

43 75.00 175.00 1.336 

44 60.00 190.00 1.336 

45 90.00 350.00 1.336 

46 90.00 350.00 1.336 

47 60.00 150.00 1.353 

48 60.00 150.00 1.353 

49 77.00 252.00 1.353 

50 77.00 252.00 1.353 
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Table AS. Unit Commitment Schedule 

Hour Units (1 through 50) 
1 11111111111111111111111111111111111111111111111111 
2 11111111111111111111111111111111111111111111111111 
3 11111111111111111111111111111111111111111111111111 
4 11111111111111111111111111111111111111111111111111 
5 11111111111111111111111111111111111111111111111111 
6 11111111111111111111111111111111111111111111111111 
7 11111111111111111111111111111111111111111111111111 
8 11111111111111111111111111111111111111111111111111 
9 11111111111111111111111111111111111111111111111111 

10 11111111111111111111111111111111111111111111111111 
11 11111111111111111111111111111111111111111111111111 
12 11111111111111111111111111111111111111111111111111 
13 11111111111111111111111111111111111111111111111111 
14 11111111111111111111111111111111111111111111111111 
15 11111111111111111111111111111111111111111111111111 
16 11111111111111111111111111111111111111111111111111 
17 11111111111111111111111111111111111111111111111111 
18 11111111111111111111111111111111111111111111111111 
19 11111111111111111111111111111111111111111111111111 
20 11111111111111111111111111111111111111111111111111 
21 11111111111111111111111111111111111111111111111111 
22 11111111111111111111111111111111111111111111111111 
23 11111111111111111111111111111111111111111111111111 
24 11111111111111111111111111111111111111111111111111 
25 11111111111111111111111111111111111111111111111111 
26 11111111111111111111111111111111111111111111111111 
27 11111111111111111111111111111111111111111111111111 
28 11111111111111111111111111111111111111111111111111 
29 11111111111111111111111111111111111111111111111111 
30 11111111111111111111111111111111111111111111111111 
31 11111111111111111111111111111111111111111111111111 
32 11111111111111111111111111111111111111111111111111 
33 11111111111111111111111111111111111111111111111111 
34 11111111111111111111111111111111111111111111111111 
35 11111111111111111111111111111111111111111111111111 
36 11111111111111111111111111111111111111111111111111 
37 11111111111111111111111111111111111111111111111111 
38 11111111111111111111111111111111111111111111111111 
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Table A5. (continued) 

Hour Units (1 through. 50) 
39 11111111111111111111111111111111111111111111111111 
40 11111111111111111111111111111111111111111111111111 
41 11111111111111111111111111111111111111111111111111 
42 11111111111111111111111111111111111111111111111111 
43 11111111111111111111111111111111111111111111111111 
44 11111111111111111111111111111111111111111111111111 
45 11111111111111111111111111111111111111111111111111 
46 11111111111111111111111111111111111111111111111111 
47 11111111111111111111111111111111111111111111111111 
48 11111111111111111111111111111111111111111111111111 
49 11111111111111111111111111111111111111111111111111 
50 11111111111111111111111111111111111111111111111111 
51 11111111111111111111111111111111111111111111111111 
52 11111111111111111111111111111111111111111111111111 
53 11111111111111111111111111111111111111111111111111 
54 11111111111111111111111111111111111111111111111111 
55 11111111111111111111111111111111111111111111111111 
56 11111111111111111111111111111111111111111111111111 
57 11111111111111111111111111111111111111111111111111 
58 11111111111111111111111111111111111111111111111111 
59 11111111111111111111111111111111111111111111111111 
60 11111111111111111111111111111111111111111111111111 
61 11111111111111111111111111111111111111111111111111 
62 11111111111111111111111111111111111111111111111111 
63 11111111111111111111111111111111111111111111111111 
64 11111111111111111111111111111111111111111111111111 
65 11111111111111111111111111111111111111111111111111 
66 11111111111111111111111111111111111111111111111111 
67 11111111111111111111111111111111111111111111111111 
68 11111111111111111111111111111111111111111111111111 
69 11111111111111111111111111111111111111111111111111 
70 11111111111111111111111111111111111111111111111111 
71 11111111111111111111111111111111111111111111111111 
72 11111111111111111111111111111111111111111111111111 
73 11111111111111111111111111111111111111111111111111 
74 11111111111111111111111111111111111111111111111111 
75 11111111111111111111111111111111111111111111111111 
76 11111111111111111111111111111111111111111111111111 
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Table A5. (continued) 

Hour Units (1 throufî  50) 
77 11111111111111111111111111111111111111111111111111 
78 11111111111111111111111111111111111111111111111111 
79 11111111111111111111111111111111111111111111111111 
80 11111111111111111111111111111111111111111111111111 
81 11111111111111111111111111111111111111111111111111 
82 11111111111111111111111111111111111111111111111111 
83 11111111111111111111111111111111111111111111111111 
84 11111111111111111111111111111111111111111111111111 
85 11111111111111111111111111111111111111111111111111 
86 11111111111111111111111111111111111111111111111111 
87 11111111111111111111111111111111111111111111111111 
88 11111111111111111111111111111111111111111111111111 
89 11111111111111111111111111111111111111111111111111 
90 11111111111111111111111111111111111111111111111111 
91 11111111111111111111111111111111111111111111111111 
92 11111111111111111111111111111111111111111111111111 
93 11111111111111111111111111111111111111111111111111 
94 11111111111111111111111111111111111111111111111111 
95 11111111111111111111111111111111111111111111111111 
96 11111111111111111111111111111111111111111111111111 
97 11111111111111111111111111111111111111111111111111 
98 11111111111111111111111111111111111111111111111111 
99 11111111111111111111111111111111111111111111111111 

100 11111111111111111111111111111111111111111111111111 
101 11111111111111111111111111111111111111111111111111 
102 11111111111111111111111111111111111111111111111111 
103 11111111111111111111111111111111111111111111111111 
104 11111111111111111111111111111111111111111111111111 
105 11111111111111111111111111111111111111111111111111 
106 11111111111111111111111111111111111111111111111111 
107 11111111111111111111111111111111111111111111111111 
108 11111111111111111111111111111111111111111111111111 
109 11111111111111111111111111111111111111111111111111 
110 11111111111111111111111111111111111111111111111111 
111 11111111111111111111111111111111111111111111111111 
112 11111111111111111111111111111111111111111111111111 
113 11111111111111111111111111111111111111111111111111 
114 11111111111111111111111111111111111111111111111111 
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Table A5. (continued) 

Hour Units (1 throu  ̂50) 
115 11111111111111111111111111111111111111111111111111 
116 11111111111111111111111111111111111111111111111111 
117 11111111111111111111111111111111111111111111111111 
118 11111111111111111111111111111111111111111111111111 
119 11111111111111111111111111111111111111111111111111 
120 11111111111111111111111111111111111111111111111111 
121 11111111111111111100011111011111110000000011111111 
122 11111111111111111100011111011111110000000011111111 
123 11111111111111111100011111011111110000000011111111 
124 11111111111111111100011111011111110000000011111111 
125 11111111111111111100011111011111110000000011111111 
126 11111111111111111100011111011111110000000011111111 
127 11111111111111111100011111011111110000000011111111 
128 11111111111111111100011111011111110000000011111111 
129 11111111111111111100011111011111110000000011111111 
130 11111111111111111100011111011111110000000011111111 
131 11111111111111111100011111011111110000000011111111 
132 11111111111111111100011111011111110000000011111111 
133 11111111111111111100011111011111110000000011111111 
134 11111111111111111100011111011111110000000011111111 
135 11111111111111111100011111011111110000000011111111 
136 11111111111111111100011111011111110000000011111111 
137 11111111111111111100011111011111110000000011111111 
138 11111111111111111100011111011111110000000011111111 
139 11111111111111111100011111011111110000000011111111 
140 11111111111111111100011111011111110000000011111111 
141 11111111111111111100011111011111110000000011111111 
142 11111111111111111100011111011111110000000011111111 
143 11111111111111111100011111011111110000000011111111 
144 11111111111111111100011111011111110000000011111111 
145 00000000111111110000000001001100110000000011110011 
146 00000000111111110000000001001100110000000011110011 
147 00000000111111110000000001001100110000000011110011 
148 00000000111111110000000001001100110000000011110011 
149 00000000111111110000000001001100110000000011110011 
150 00000000111111110000000001001100110000000011110011 
151 00000000111111110000000001001100110000000011110011 
152 00000000111111110000000001001100110000000011110011 
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Table A5. (continued) 

Hour Units (1 through 50) 
153 00000000111111110000000001001100110000000011110011 
154 00000000111111110000000001001100110000000011110011 
155 00000000111111110000000001001100110000000011110011 
156 00000000111111110000000001001100110000000011110011 
157 00000000111111110000000001001100110000000011110011 
158 00000000111111110000000001001100110000000011110011 
159 00000000111111110000000001001100110000000011110011 
160 00000000111111110000000001001100110000000011110011 
161 00000000111111110000000001001100110000000011110011 
162 00000000111111110000000001001100110000000011110011 
163 11111111111111111100011111011111110000000011111111 
164 11111111111111111100011111011111110000000011111111 
165 11111111111111111100011111011111110000000011111111 
166 11111111111111111100011111011111110000000011111111 
167 11111111111111111100011111011111110000000011111111 
168 11111111111111111100011111011111110000000011111111 
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Table A6. Configuration of Power Plants and Fuel Groups 

Power Plant Generating Units Fuel Group Generating Units 

1 1 - 3  1 1 - 3  

2 4 - 7  2 4 - 7  

3 8-10 3 8-10 

4 11-16 4 11-16 

5 17-20 5 17-20 

6 21-26 6 21-26 

7 27-30 7 27-30 

8 31-34 8 31-32 

9 35-38 9 33-34 

10 39-42 10 35-42 

11 43-46 11 43-46 

12 47-50 12 47-50 



www.manaraa.com

152 

Table A7. Load Values 

Hour Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 

1 2976 4118 4290 4078 3861 3003 2145 

2 3036 3867 4026 3828 3623 2818 2013 

3 3095 3484 3630 3451 3267 2541 1815 

4 3154 3293 3432 3260 3088 2402 1716 

5 3399 3550 3696 3511 3326 2587 1848 

6 3828 3993 4158 3953 3742 2910 2079 

7 4131 4309 4488 4263 4039 3141 2244 

8 4369 4560 4752 4514 4276 3326 2376 

9 4613 4818 5016 4765 4514 3511 2508 

10 4857 5068 5280 5016 4752 3696 2640 

11 4976 5194 5412 5141 4870 3788 2706 

12 4672 4877 5082 4831 4573 3557 2541 

13 4917 5134 5346 5082 4811 3742 2673 

14 5161 5385 5610 5326 5049 3927 2805 

15 5405 5636 5874 5583 5286 4111 2937 

16 5649 5893 6138 5834 5524 4296 3069 

17 5887 6144 6402 6078 5761 4481 3201 

18 6072 6336 6600 6270 5940 4620 3300 

19 5827 6085 6336 6019 5702 4435 3168 

20 5346 5577 5808 5517 5227 4065 3036 

21 5042 5260 5478 5200 4930 3834 2871 

22 4798 5002 5214 4956 4692 3649 2772 

23 4494 4686 4884 4639 4395 3418 2838 

24 4191 4369 4554 4323 4098 3187 2904 
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